
Java equals()

Data Structures & Algorithms

1

CS@VT ©2010 McQuain

equals() in the class Object
The Object class implements a public equals() method that returns true iff the two
objects are the same object.

That is:

x.equals(y) == true iff x and y are the same object

For some subclasses, this is adequate, especially for types for which the notion of an
equality comparison doesn't really make practical sense.

Java equals()

Data Structures & Algorithms

2

CS@VT ©2010 McQuain

Identity vs Equality

A deeper examination of the issue indicates there are two fundamentally distinct
relationships at work, and that Object equals() conflates them:

identity

the relationship of being the same thing;

x is identical to y iff x and y are the same object;

in Java, this is tested by the operator ==

equality

the relationship of having the same value;

x is equal to y iff x and y, in some useful sense, have equivalent content;

x and y may or may not be the same object;

in Java, this is tested by the equals() method

For many user-defined types, there are natural definitions of an equality relationship.

Java equals()

Data Structures & Algorithms

3

CS@VT ©2010 McQuain

General Contract for equals()

The equals method implements an equivalence relation on non-null object references,
equals() is:

- reflexive: for any non-null reference value x, x.equals(x) should return true

- symmetric: for any non-null reference values x and y, x.equals(y) should return
true if and only if y.equals(x) returns true

- transitive: for any non-null reference values x, y, and z, if x.equals(y) returns
true and y.equals(z) returns true, then x.equals(z) should return true

In addition:

- it is consistent: for any non-null reference values x and y, multiple invocations of
x.equals(y) consistently return true or consistently return false, provided no
information used in equals comparisons on the objects is modified.

- for any non-null reference value x, x.equals(null) should return false.

Java equals()

Data Structures & Algorithms

4

CS@VT ©2010 McQuain

A User-defined Class

public class FileEntry {

public Long offset; // offset of record in file
public String record; // record contents

public FileEntry(long offset, String data) {

this.offset = offset;
this.record = data;

}
. . .

}

Here's a class that might be used in a program that accesses records from a file.

It's certainly possible we might create two different FileEntry objects from the same
record, in which case the notion of equals is different from identity.

Java equals()

Data Structures & Algorithms

5

CS@VT ©2010 McQuain

Standard equals() Features

public class FileEntry {

. . .

public boolean equals(Object other) {

// Make sure there really IS another object:
if (other == null) return false;

// Make sure it's of the correct type:
if (!this.getClass().equals(other.getClass()))

return false;
. . .

}
}

We need to satisfy the general contract:

Java equals()

Data Structures & Algorithms

6

CS@VT ©2010 McQuain

Specialized equals() Features

public class FileEntry {

. . .

public boolean equals(Object other) {

. . .
// Get a reference of the appropriate type:
FileEntry o = (FileEntry) other;

// Perform the type-specific test for equality:
return (this.offset.equals(o.offset));

}
}

We need to implement a sensible definition of what equality means for this type:

Java equals()

Data Structures & Algorithms

7

CS@VT ©2010 McQuain

Complete Method

public class FileEntry {

. . .

public boolean equals(Object other) {

// Make sure there really IS another object:
if (other == null) return false;

// Make sure it's of the correct type:
if (!this.getClass().equals(other.getClass()))

return false;

// Get a reference of the appropriate type:
FileEntry handle = (FileEntry) other;

// Perform the type-specific test for equality:
return (this.offset.equals(handle.offset));

}
}

Java equals()

Data Structures & Algorithms

8

CS@VT ©2010 McQuain

Issues with Overriding

Consider the following scenario:

public class
prQuadtree< T extends TwoDComparable<? super T> > {
. . .
// calls equals() on the generic objects it stores

public interface TwoDComparable<T> {
public long getX();
public long getY();

}

The calls to equals() will bind to Object equals() because the Java compiler
does not know what the actual type is going to be.

All that's known is that a T is-a-kind-of TwoDcomparable<?> and that doesn't
guarantee a specialized implementation of equals().

And so, the tree's search logic will be broken…

Java equals()

Data Structures & Algorithms

9

CS@VT ©2010 McQuain

A Fix
If we add the equals() method to the interface that T must extend, all is well:

public interface TwoDComparable<T> {
public long getX();
public long getY();
public boolean equals(Object other);

}

Now the compiler knows that whatever a T is, it must provide an equals() method.

And so, the tree's search logic will work…

Java equals()

Data Structures & Algorithms

10

CS@VT ©2010 McQuain

A Debugging Hint

When in doubt, let your code talk to you:

public class FileEntry {
. . .
public boolean equals(Object other) {

System.out.println("Call made to FileEntry.equals()");
. . .

}
}

