
CS 2604 Data Structures Midterm Summer I 2005

 1

V
IR

G
IN

IA

PO
LYTECHNIC

INSTITU
TE

A
N

D

STATE UNIVERSI T
Y

UT PROSI M

Instructions:

• Print your name in the space provided below.
• This examination is closed book and closed notes, aside from the permitted one-page formula sheet. No

calculators or other computing devices may be used.
• Answer each question in the space provided. If you need to continue an answer onto the back of a page, clearly

indicate that and label the continuation with the question number.
• If you want partial credit, justify your answers, even when justification is not explicitly required.
• There are 10 questions, priced as marked. The maximum score is 100.
• When you have completed the test, sign the pledge at the bottom of this page and turn in the test.
• Note that either failing to return this test, or discussing its content with a student who has not taken it is a

violation of the Honor Code.

Do not start the test until instructed to do so!

Name Solution
 printed

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 signed

CS 2604 Data Structures Midterm Summer I 2005

 2

1. [9 points] Complete the statement of the theorem below:

 Theorem Suppose that f and g are functions with domain [1, ∞) and that: C
ng
nf

n
=

∞→)(
)(lim

Then: (a) f(n) is strictly O(g(n)) if C is 0.

 (b) f(n) is strictly Ω(g(n)) if C is ∞.

 (c) f(n) is Θ(g(n)) if C is positive and finite.

2. [8 points] Use the theorem you completed above to either prove the statement below is true, or that it is false. (Be sure to

state your conclusion.)

 ()22 is log3)(nnnnnf Θ+=

∞=

 +=

+
∞→∞→

n
nn

nnn
nn

log31limlog3lim 2

2

Therefore, the statement is false; in fact, f is strictly Ω(n2).

3. [10 points] A programmer must choose a data structure to store N records, which will be supplied to the program in

random order, and to support random searches on those records. Suppose the programmer decides to use a sorted array.
As each element is received, it will be placed in its (currently) proper location in the array.

a) What is the expected Θ-complexity for putting all N elements into the array? Explain.

As described, each element must be put into the array in its proper location relative to the previous contents of the
array. That means that some of the elements must be shifted; on average half of them would be shifted. So, when
the i-th element is inserted, the average number of elements to be shifted would be about (i – 1)/2.

So the total cost of inserting all N elements would be given by the following formula, which is Θ(N2):

∑
=

−

 +

=
−

=
N

i
NnniNT

1 2
1

2
)1(

2
1

2
1)(

b) If N = 220, estimate the cost of performing 230 searches on the data in the array? Your answer should be a number,

perhaps expressed using powers of 2.

It's a sorted array, so the cost of a single search would be Θ(log N), which is 20. So the total cost of all those
searches would be:

3230 25220 ×=×

CS 2604 Data Structures Midterm Summer I 2005

 3

4. [12 points] Assuming that each assignment, arithmetic operation, comparison, and array index costs one unit of time,

analyze the complexity of the body of the following code fragment that computes an approximation of the number π, and
give a simplified exact count complexity function T(N) and state its big-Θcategory:

double Pi(unsigned int N) {

 double Approx;
 Approx = 1.0; // 1

 for (unsigned int It = 1; It <= N; It++) { // 1 before, 2 during, 1 after

 double Term = 1.0 /(2.0 * It + 1); // 4

 if (It % 2 == 0) // 2
 Sign = 1.0; // 1
 else
 Sign = -1.0; // 1

 Approx = Approx + Sign * Term; // 3
 }

 Approx = 4.0 * Approx; // 2
 return Approx; // 1
}

The total cost function would be:

() () NNT
N

It

N

It
1261261213124211)(

11
+=+=+++++++++= ∑∑

==

This is Θ(N).

CS 2604 Data Structures Midterm Summer I 2005

 4

5. [10 points] Referring to the binary tree shown below, write down the values in the order they would be visited if an
enumeration was done using:

a) a preorder traversal

b) a postorder traversal

50 25 10 40 75 60 66 70 90 80 95 10 40 25 55 70 60 80 95 90 75 50

For each of the questions 5 and 6, start with the following BST:

6. [8 points] Draw the resulting BST if 63 is inserted.

7. [8 points] Draw the resulting BST if 50 is deleted.

10 40 60

50

25 75

90

55 70 80 95

10 40 60

50

25 75

90

55 70 80 95

63

10 40 60

55

25 75

90

70 80 95

CS 2604 Data Structures Midterm Summer I 2005

 5

For question 8, assume the following template declarations for an implementation of a doubly-linked list:

// DNodeT.h
//
. . .
template <typename T> class DNodeT {
public:
 T Element;
 DNodeT<T>* Prev;
 DNodeT<T>* Next;
 // irrelevant members not shown
};
. . .

// DListT.h
//
. . .
template <typename T> class DListT {
private:
 DNodeT<T>* Head, Tail; // pointers to first and last data nodes, if any
 DNodeT<T>* Fore, Aft; // pointers to leading and trailing sentinels
public:
 // irrelevant members not shown
 iterator begin(); // return iterator to first data node (or end())
 iterator end(); // one-past-end
 const_iterator begin() const; // return const_iterator objects similarly
 const_iterator end() const;
 ~DListT(); // destroy all dynamic content of the list
};
. . .

8. [10 points] Write an implementation of the copy constructor for the DListT template. You may not call any other

member functions of the template in your solution.

 template <typename T> DListT<T>::DListT(const DListT<T>& Source) {

 Head = Tail = Null;
 Fore = new DNodeT<T>();
 Aft = new DNodeT<T>();

 Fore->Next = Aft;
 Aft->Prev = Fore;

 DNodeT<T>* Curr = Source.Fore.Next;

 while (Curr != Source.Aft) {
 DNodeT<T>* nextNode = new DNodeT<T>(Curr->Element, Aft->Prev, Aft);
 Aft->Prev->Next = nextNode;
 Aft->Prev = nextNode;
 Curr = Curr->Next;
 }

 if (Fore->Next != Aft) {
 Head = Fore->Next;
 Tail = Aft->Prev;
 }
}

CS 2604 Data Structures Midterm Summer I 2005

 6

9. [10 points] Prove: for all L ≥ 0, if T is a binary tree with L levels, the maximum number of nodes T can have is 2L - 1.

 Hint: a nonempty binary tree consists of a root node and two subtrees; use Strong Induction.

proof: Let S = { L ≥ 0 | if T is a binary tree with L levels, then T has no more than 2L – 1 nodes}.

Suppose that T is a binary tree with 0 levels. Then T must be empty, and since 20 – 1 = 0, 0 is in S.

Suppose that for some K ≥ 0, for every L such that 0 ≤ L ≤ K, L is in S. That is, for every L from 0 to K, if T is a
binary tree with L levels, then T has no more than 2L – 1 nodes.

We must show that if T is a binary tree with L + 1 nodes, then T can have no more than 2L+1 – 1 nodes.

Suppose that T is a binary tree with L + 1 nodes. Now T is not empty, so it consists of a root node and two
(possibly empty) subtrees. Now each of the subtrees has fewer levels than T; therefore, each of the subtrees has no
more than 2L – 1 nodes.

Hence, the total number of nodes in T is no more than 1 + 2L – 1 + 2L – 1 = 2*2L – 1 = 2L+1 – 1. Therefore, L + 1 is
in S.

So, by mathematical induction, S = {L ≥ 0}.

CS 2604 Data Structures Midterm Summer I 2005

 7

For question 10, assume the following template declarations for an implementation of a binary tree:

template <typename T> class BinNodeT {
public:
 T Element;
 BinNodeT<T>* Left;
 BinNodeT<T>* Right;
 // irrelevant members not shown
};

template <typename T> class BST {
protected:
 BinNodeT<T>* Root;
 // irrelevant members not shown

public:
 // irrelevant members not shown
};

10. [15 points] Write an implementation for the new BST member function described below. Your implementation should not

need to call any other template member functions, except for any helper member functions you may wish to write.

 // Range() uses a (modified) inorder traversal pattern, and prints all the
 // values it finds that are strictly between the parameters Min and Max to cout.
 // The function should not visit any tree nodes unnecessarily.
 //
 template <typename T> void BST<T>::Range(const T& Min, const T& Max) const {

 rangeHelper(Root, Min, Max);
}

 template <typename T>
void BST<T>::rangeHelper(BinNodeT<T>* sRoot, const T& Min, const T& Max) const {

 if (sRoot == NULL) return; // done, if we're not at a node

 if (Min < sRoot->Element) // no need to check left subtree if
 // this element is too small
 rangeHelper(sRoot->Left, Min, Max);

 // check whether current element is in the range
 if (Min < sRoot->Element && sRoot->Element < Max)
 cout << sRoot->Element << endl;

 if (sRoot->Element < Max) // no need to check left subtree if
 // this element is too large
 rangeHelper(sRoot->Left, Min, Max);
}

CS 2604 Data Structures Midterm Summer I 2005

 8

