
CS 2606 Data Structures and OO Devel II Midterm

 1

READ THIS NOW!

• Print your name in the space provided below.

• Unless a question involves determining whether given C++ code is syntactically correct, assume that it is. Unless
a question specifically deals with compiler #include directives, you should assume the necessary header files
have been included.

• There are 8 short-answer questions, priced as marked. The maximum score is 100.

• When you have finished, sign the pledge at the bottom of this page and turn in the test and your fact sheet.

• Aside from the allowed one-page fact sheet, this is a closed-book, closed-notes examination.

• No laptops, calculators, cell phones or other electronic devices may be used during this examination.

• You may not discuss this examination with any student who has not taken it.

• Failure to adhere to any of these restrictions is an Honor Code violation.

Name (Last, First)
 printed

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 signed

CS 2606 Data Structures and OO Devel II Midterm

 2

1. It is a fact that for all 1, 2 2 !nn n≥ ≤ .

a) [10 points] Prove the fact stated above.

proof: If n = 1, then 2^n = 2 and 2n! = 2x1! = 2, so the result holds.

Suppose that for some integer k >= 1, 2^k < 2k!. Then:

12 2 2 factoring
2 2 ! inductive hypothesis
(1)2 ! since k >= 1, k+1 >= 2
2 !(1) commutativity of multiplication
2(1)! definition of factorial

k k

k
k k
k k
k

+ = ⋅
≤ ⋅
≤ + ⋅
= ⋅ +
= +

Hence, for all n >= 1, we have that 2^n <= 2n!.

b) [10 points] Assuming the fact stated above is correct, what does that fact imply regarding any big-Ο, big-Ω and/or

big-Θ relationships between the functions 2n and n!?

Two things are implied:

• 2^n is O(2n!)
• 2n! is Ω(2^n)

There is no implication of a Θ-relationship between the two functions. In fact, they don't have a Θ-
relationship.

CS 2606 Data Structures and OO Devel II Midterm

 3

2. Consider the following algorithm for computing the sum of two matrices:

for (i = 0; i < N; i++) { // 1 before, 2 each pass, 1 on exit
 for (j = 0; j < N; j++) { // 1 before, 2 each pass, 1 on exit
 sum[i][j] = a[i][j] + b[i][j]; // 8 operations
 }
}

a) [10 points] Using the rules given in class for counting operations, find a simplified function T(N) that counts the

number of operations the algorithm would perform.

()

()

1 1

0 0

1 1

1
2

() 1 2 1 2 8 1 1

2 4 10

2 4 10

2 4 10

N N

i j

N N

i j

N

i

T N

N

N N

− −

= =

= =

=

= + + + + + +

= + +

= + +

= + +

∑ ∑

∑ ∑

∑

b) [5 points] What big-Θ complexity class does your answer to the previous part belong to? (No proof is necessary.)

Θ(N^2)

CS 2606 Data Structures and OO Devel II Midterm

 4

 3. [10 points] Using any applicable theorem or definition covered in class, prove or disprove the following statement:

() ()
3

3 3() is but not
log
nf n n n
n

= Ο Θ

First of all, observe that:

3

3

() 1loglimit limit limit 0
() logn n n

n
f n n
g n n n→∞ →∞ →∞

= = =

By the Corollary to Theorem 8, this implies that f is O(g) but f is not Θ(g).

4. [15 points] Recall that the access time for a hard drive is the sum of three separate measures of performance. Suppose

that an existing hard drive design was modified by making the following two changes:

• the rotational speed is increased by 30%
• the number of tracks on each surface is increased by 20%, with a corresponding increase in the radius of the

platters

No other characteristics of the original drive design are changed, aside from the obvious increase in the storage
capacity. Describe what effect these changes, if any, will have on each of the three measures, and why.

Measure Effect

Seek time increased, because seek time is largely determined by the average number of tracks

that must be crossed and that has been increased by 20%

Latency decreased, because average latency is half of the time for the platter to revolve, and
that has been decreased by 30%

Transfer time decreased, for the same reason as thelatency

CS 2606 Data Structures and OO Devel II Midterm

 5

5. [10 points] Suppose that a web-hosted database application stores its data in a single file, which is just a large
collection of GIS records (as used in the 2606 projects so far). The records in the file are sorted into ascending order
by their feature identifiers (FIDs). Lots of clients use this application, looking up geographic features that they find
interesting for a variety of typical reasons.

 Discuss whether, and why, the application is likely to exhibit spatial locality in its accesses of the data file.

It is not likely that the application will exhibit much spatial locality in its file accesses. The only way that
spatial locality would occur would be if users tended to access records that have nearly-equal FIDs. But the
FID is just a serial number for the record and bears no relation to the attributes of the geographic feature, and
it does not seem likely that users would be curious about the FIDs themselves.

 Discuss whether, and why, the application is likely to exhibit temporal locality in its accesses of the data file.

The application will exhibit temporal locality if users tend to repeat accesses to the same records. This is
actually rather likely; for example, current events may spur widespread interest in certain geographic features,
leading to the phenomenon that many users will request the same records.

6. [10 points] Why should a container implemented as a C++ template provide a const version of its Find()

function? A sample of possible client code would be useful to illustrate your discussion.

If an object is declared as const, then only const methods may be invoked on it.

This situation is quite likely to arise when a container is used, because in C++ container objects are typically
passed either by reference or by constant reference, in order to avoid the cost of copying the entire container
(not to mention the data objects it organizes).

Note: this has absolutely nothing to do with the issue of the client modifying data objects within the container.
In almost every case, the data objects are not physical elements of the container itself, and const member
functions are only forbidden to change non-mutable data members of the objects on which they are invoked.
For example, a tree object probably has only one data member, a pointer to the root node, and that is the only
thing that a const member function of the tree implementation is not allowed to modify. In particular, there
is absolutely no reason that a const Find() function in a tree cannot return an entirely non-const pointer
to a data object.

CS 2606 Data Structures and OO Devel II Midterm

 6

7. [10 points] Explain the rationale for using an inheritance hierarchy for the nodes when implementing a PR quadtree;
address the issue of why one would not derive the leaf type from the internal type, or vice versa (but not only that
issue).

Internal nodes only need to store pointers to other nodes, while leaf nodes only need to store single data objects.
Since it would be wasteful of memory to use a single node type, this argues in favor of having two different
kinds of nodes, say Leaf and Internal. (That, however, does not automatically require the use of
inheritance.)

The pointers in an internal node may point to other internal nodes or to leaf nodes. If we disregard the
somewhat silly and wasteful possibility of having 4 Leaf pointers and 4 Internal pointers in each internal
node, we need a single pointer type that can target both kinds of nodes and provide us with some way to
determine the actual kind of node at runtime. This implies that we need to put Leaf and Internal into an
inheritance hierarchy so we can use base-type pointers and dynamic_cast.

However, since Leaf and Internal objects have no common data members, we cannot derive one from the
other without adding unnecessary data members to the subtype.

8. [10 points] Recall the definition of the AVL tree, and the rotation operations that may be used to re-balance the tree

after an insertion occurs.

 If you have a large AVL tree, will it be always necessary to perform rotations after every insertion that increases the

height of the tree. Explain.

In an AVL tree, rotations are needed after an insertion only if the insertion resulted in a node having subtrees
whose heights differ by more than 1. That will not necessarily occur.

 Exactly what do the AVL rotations do that results in an improvement over a simple BST?

The rotations after an insertion reduce the height of a subtree (relative to what it would have been in a plain
BST). That is what leads to the AVL typically having fewer levels than a BST created by inserting the same
elements in the same order.

