You will submit your solution to this assignment to the Curator System (as HW1). Your solution must be either a plain text file (e.g., NotePad) or a MS Word document; submissions in other formats will not be graded.

Except as noted, credit will only be given if you show relevant work.

1. [20 points] Using the rules given in the course notes, perform an exact count complexity analysis, for the worst case, of the body of the following function. (Take list. length to be N.)
```
    int part(int[] list, int barrierIdx) {
    int barrier, maxIdx, temp;
    barrier = list[barrierIdx]; // 1 2
    maxIdx = list.length - 1; // 2 2 or 3
    temp = list[barrierIdx]; // 3 2
    list[barrierIdx] = list[maxIdx]; // 4 3
    list[maxIdx] = temp; // 5 2
    barrierIdx = 0; // 6 1
    for (int i = 0; i < maxIdx; i++) { // 7 1 before; 2 per pass;
        if ( list[i] < barrier ) { // 8 2
            temp = list[barrierIdx]; // 9 2
            list[barrierIdx] = list[i]; //10 3
            list[i] = temp; //11 2
            barrierIdx++; //12 1
        }
    }
    temp = list[maxIdx]; //13 2
    list[maxIdx] = list[barrierIdx]; //14 3
    list[barrierIdx] = temp; //15 2
    return barrierIdx; //16 1
```

\}
$T(N)=2+3+2+3+2+1+1+\sum_{i=1}^{N-1}(1+2+2+3+2+1+1)+1+2+3+2+1$
$=\sum_{i=1}^{N-1} 12+23$
$=12(N-1)+23$
$=12 N+11$
2. [40 points] For each part, determine the simplest possible function $g(n)$ such that the given function is $\Theta(g)$. No justification is necessary.
a) $a(n)=3 n^{2}+14 n+47$
n^{2}
b) $b(n)=14 n+3 n \log n$
$n \log n$

Hint: the last three take a little analysis.
c) $c(n)=n^{0.9}+\log n \quad n^{0.9}$
d) $d(n)=3 n^{2} \log n+n^{3} \quad n^{3}$
e) $e(n)=3 n \log ^{2} n+3 n^{2} \log n \quad n^{2} \log n$
3. [20 points] Suppose that f and g are non-negative functions such that f is $\Theta(\mathrm{g})$. Is it necessarily true that:

$$
2^{f(n)} \text { is } \Theta\left(2^{g(n)}\right)
$$

If so, prove it. (You may assume that the limit referred to in Theorem 8 exists.) If no, give a specific counter-example and show that it is a counter-example.

The assumption the limit exists does not result in a proof, since:

$$
\operatorname{limit}_{n \rightarrow \infty} \frac{2^{f(n)}}{2^{g(n)}}=\operatorname{limit}_{n \rightarrow \infty} 2^{f(n)-g(n)}
$$

The assumption that f is $\Theta(\mathrm{g})$ may seem to tell us anything useful here, since it would at most imply something about the limit of the ratio of f to g, not their difference.

That observation, though, suggests that there may be a simple counter-example. Does the fact that the limit of \mathbf{f} / \mathbf{g} is finite really imply that the limit of $\mathrm{f}-\mathrm{g}$ is finite? Consider a simple example, say:

$$
f(n)=n \text { and } g(n)=2 n
$$

Now, $f(n) / g(n)=2$, so the limit of the ratio is clearly $\mathbf{2}$ and so f is clearly $\Theta(g)$. But, on the other hand, $f(n)-g(n)$ is \mathbf{n}, and the limit of n isn't finite. That is:

$$
\operatorname{limit}_{n \rightarrow \infty} \frac{2^{n}}{2^{2 n}}=\operatorname{limit}_{n \rightarrow \infty} \frac{1}{2^{n}}=0
$$

and so 2^{f} is clearly not $\Theta\left(2^{\mathrm{g}}\right)$.
4. [20 points] Suppose that executing an algorithm on input of size N requires executing $T(N)=N \log N+8 N$ instructions. How long would it take to execute this algorithm on hardware capable of carrying out 2^{24} instructions per second if $\mathrm{N}=$ 2^{32} ? (Give your answer in hours, minutes and seconds, to the nearest second.)

The number of instructions to be executed would be $T\left(2^{\wedge} 32\right)$:

$$
T\left(2^{32}\right)=2^{32} \log 2^{32}+8 \cdot 2^{32}=32 \cdot 2^{32}+8 \cdot 2^{32}=40 \cdot 2^{32}
$$

So the time required (in seconds) would be:

$$
\text { Time }=\frac{40 \cdot 2^{32}}{2^{24}}=40 \cdot 2^{8}=10240
$$

Converting to HH:MM:SS gives us 2:50:40 (2 hours, 50 minutes, 40 seconds).

