
CS 3114 Data Structures and Algorithms Homework 3: Complexity

You may work with a partner on this assignment. 1

You may work in pairs for this assignment. If you choose to work with a partner, make sure only one of you submits a

solution, and you paste a copy of the Partners Template that contains the names and PIDs of both students at the beginning

of the file you submit.

You will submit your solution to this assignment to the Curator System (as HW03). Your solution must be either a plain text

file (e.g., NotePad++) or a typed MS Word document; submissions in other formats will not be graded.

Partial credit will only be given if you show relevant work.

In all questions about complexity, functions are assumed to be nonnegative.

1. [36 points] The analysis of a certain algorithm leads to the following complexity function (for the average case):

    
2 2() 3 log () 5 log() log() 17 2T N N N N N N N

Several computer science students offer their conclusions about the algorithm (quoted below). For each conclusion, state

whether it is correct, or incorrect, or could be either correct or incorrect, based on the given information, and give a brief

justification of your answer; feel free to cite any relevant theorems from the course notes.

First of all, let’s settle the issue of what Θ-category T(N) belongs to:

 



 
  

 

 
  

 



2 2 2 2

2 2 2 2 2 2N N

2 2N

3Nlog N +5N logN +logN +17N +2 3Nlog N 5N logN logN 17N 2
limit limit + + + +

N logN N logN N logN N logN N logN N logN

3logN 1 17 2
limit +5 + + +

N N NlogN N logN

0 +5 + 0 + 0 + 0

= 5

Therefore, T(N) is Θ(N2 log N).

a) The algorithm, on average, is 2()N .

False. On average, N2 is strictly O(N2 log N); in other words, the Θ-bound on T(N) is strictly

larger than N2, so N2 cannot be an upper bound for T(N).

b) The algorithm, on average, is ()N .

True. N2 log N is Ω(N); in other words, N is certainly a lower bound for N2 log N.

c) The algorithm, on average, is 2(log)N N .

True. T(N) is Θ(N2 log N); so by definition T(N) is Ω(N2 log N).

d) The algorithm, on average, is 
2(log)N N .

True. Proved above.

CS 3114 Data Structures and Algorithms Homework 3: Complexity

You may work with a partner on this assignment. 2

e) The algorithm, on average, is  3()N .

True. On average, T(N) is Θ(N2 log N); and we can easily show that N2 log N is O(N3):

 
 

2

3N N

N logN logN
limit limit 0

N N

f) The algorithm, on average, is 
2(log)N N .

False. We showed that on average T(N) is Θ(N2 log N), and one part of that proof showed

that

 
 

2

2N N

Nlog N logN
limit limit 0

N logN N

And, that shows that N2 log N is strictly Ω(N log2 N).

g) In the worst case, the algorithm could be 3()N .

True. We aren’t given any direct information about the worst case; however, it’s certainly

possible that the worst case could be much worse than the average case, and we have already

seen that N3 is a strict upper bound for the average case.

h) In the worst case, the algorithm could be (log)N .

True. The worst case can certainly be no better than the average case, and the average case

is Θ(N2 log N), which is certainly Ω(log N). In fact, the worst case must be Ω(log N).

i) In the worst case, the algorithm must be ()N .

True. Similar logic to the previous part… worst cannot be better than average, and average is

certainly Ω(N).

j) The algorithm's best case performance is 2(log)N N .

May be true, may be false. The best case cannot be worse than the average case, and it

could be the same; if so, this is true. But, the best case might be considerably better than

the average case; if so, this is false.

k) The algorithm's best case performance cannot be (log)N N .

False. The best case could be anything equal to, or better than, the average case.

l) The algorithm's best case performance is strictly (log)N .

May be true, may be false. While unlikely, it’s possible the best case is Θ(1), in which case

this is true. On the other hand, the best case might be equal to, or worse than, log N.

CS 3114 Data Structures and Algorithms Homework 3: Complexity

You may work with a partner on this assignment. 3

2. [24 points] Suppose that an algorithm takes 30 seconds for an input of 2
24

 elements (with some particular, but unspecified

speed in instructions per second). Estimate how long the same algorithm, running on the same hardware, would take if

the input contained 2
30

 elements, and that the algorithm's complexity function is:

a) ()N

b) (log)N

c) (log)N N

d) 2()N

Assume that the low-order terms of the complexity functions are insignificant, and state your answers in the form

HH:MM:SS.S (hours, minutes, seconds, tenths of a second). Be sure to show supporting work.

It helps to start with the following observation. Since the algorithm takes 30 seconds for an

input of size 224, we know that if the hardware can execute S instructions per second T(224) / S =

30 seconds.

a) Suppose T(N) = N (we can ignore low-order terms). Then

T(230) / S = 230 / S = 26 * (224 / S) = 64 * 30 seconds = 32 minutes

So, the running time would be about 00:32:00.0.

b) Suppose T(N) = log N. Then

T(224) / S = log(224) / S = 24 / S

and

T(230) / S = log(230) / S = 30 / S = 1.25 * (24 / S) = 1.25 * 30 seconds = 37.5 seconds

So, the running time would be about 00:00:37.5.

c) Suppose T(N) = N log N. Then

T(224) / S = 224 log(224) / S = 24 * 224 / S

and

T(230) / S = 230 log(230) / S = 30 * 26 * 224 / S = 26 * 5/4 * (24 * 224 / S)

= 80 * (24 * 224 / S) = 80 * 30 seconds = 40 minutes

So, the running time would be about 00:40:00.0.

d) Suppose T(N) = N2. Then

T(224) / S = 248 / S

and

T(230) / S = 260 / S = 212 * 248 / S = 4096 * 30 seconds = 2048 minutes

So, the running time would be 34:08:00.0.

CS 3114 Data Structures and Algorithms Homework 3: Complexity

You may work with a partner on this assignment. 4

3. [18 points] Use theorems from the course notes to solve the following problems. Show work to support your conclusions.

a) Find the "simplest" function g(n) such that
3/2

() 17 3 log 1000 is (g(n))f n n n n   

Since

 

 

 

 
 
 

   
     

   

   
      

  



3/2 3/2

3/2 3/2 3/2 3/2n n

1/2 3/2 1/2n n

-1/2 1/2n n

17n + 3nlogn + 1000 3 log17n 1000
limit = limit + +

n n n n

3log 3log1000
limit 17 + + 17 limit

n n n

3 / ln2 6 1
17 limit 17 limit

ln2(1 / 2)n n

n n

n n

n

17

we see that f(n) is Θ(n3/2).

b) Find the "simplest" function g(n) such that
2 2

() 5 log 8 log n is (g(n))  f n n n n

Since

 

 



 
   

 

   
      

  

 
   

 

2 2 2 2

2 2 2n n

n n

n

5 log 8 log 5 log 8 log
limit limit

log log log

5log 5 / ln2
limit 8 8 limit

1

5 1
8 limit 8

ln2

n n n n n n n n

n n n n n n

n n

n

n

we see that f(n) is Θ(n2 log n).

c) Find the "simplest" function g(n) such that

 () log n+1000 is (g(n))f n n  

Since

  



      
      

  

 
   

 

1/2n n n

1/2

n

log(1000) log(1000) 1 / (1000)ln2
limit limit 1 1 limit

1 / 2

2
1 limit 1

ln2 1000

n n n n

nn n

n

n

we see that f(n) is Θ(n1/2).

CS 3114 Data Structures and Algorithms Homework 3: Complexity

You may work with a partner on this assignment. 5

4. [12 points] Using the counting rules from the course notes, find the exact-count complexity function T(n) for the

following algorithm. Show details of your analysis, and simplify your answer. In simplifying, you may discard the floor

notation.

x = 100; // 1

y = 0; // 1

for (r = 1; r <= n; r++) { // 1 before; 2 per pass; 1 to exit

 x = x + r; // 2

 for (c = 2; c <= r; c = 2*c) { // 1 before; 3 per pass; 1 to exit

 if (x > y / c) // 2

 y = y + r / c; // 3

 else

 y = y – c; // 2

 }

}

The costs per line are indicated above. They lead to the following formula for T(n):

 

 

 

 

log

1 1

log

1 1

1

() 3 2 2 1 3 2 max(3,2) 1 1

8 6 4

8log 6 4

8 log1 log2 log 6 4

8log ! 6 4

rn

r p

rn

r p

n

r

T n

r

n n

n n

 

 



 
         

 

 
   

 

  

     

  

 

 



Detail: the bounds on the inner loop come from the following observations. Number the passes

through the inner loop starting at p = 1. Now, c takes on the values 2, 4, 8, and so forth. So,

on pass p, c = 2p. Therefore, the loop continues as long as

    
log2 2 logp rc r p r

This is similar to the analysis of binary search shown in the course notes.

CS 3114 Data Structures and Algorithms Homework 3: Complexity

You may work with a partner on this assignment. 6

5. [10 points] Use the definition of Θ to prove that, if b is any positive constant, then

 log(n+b) is log()n

proof:

From the definition of Θ, we must show that there are constants C1 > 0, C2 > 0 and N > 0 such

that whenever n > N we have that

  
1 2
log log() logC n n b C n

Now, b > 0, so n + b > n; and log() is an increasing function, so log(n+b) > log(n). Therefore, we

can show the left-hand inequality by taking C1 = 1 and N = 1.

For the other side, suppose that n > b. (That’s fair, since b is a constant.) Then n + b < n + n,

and so

        log() log() log(2) log() 1 log() log() 2log()n b n n n n n n n

So, the right-hand inequality holds if we take C2 = 2 and say n > b.

Putting it all together, we have that

   if , log log() 2logn b n n b n

Therefore, log(n + b) is Θ(log(n)).

