
CS 3114 Data Structures and Algorithms Homework 3:  Complexity 

 

You may work with a partner on this assignment. 1 

You may work in pairs for this assignment.  If you choose to work with a partner, make sure only one of you submits a 

solution, and you paste a copy of the Partners Template that contains the names and PIDs of both students at the beginning 

of the file you submit.  

 

You will submit your solution to this assignment to the Curator System (as HW03).  Your solution must be either a plain text 

file (e.g., NotePad++) or a typed MS Word document; submissions in other formats will not be graded. 

 

Partial credit will only be given if you show relevant work. 

  

 

In all questions about complexity, functions are assumed to be nonnegative. 

 

1. [36 points]  The analysis of a certain algorithm leads to the following complexity function (for the average case): 

 

    
2 2( ) 3 log ( ) 5 log( ) log( ) 17 2T N N N N N N N  

 

Several computer science students offer their conclusions about the algorithm (quoted below).  For each conclusion, state 

whether it is correct, or incorrect, or could be either correct or incorrect, based on the given information, and give a brief 

justification of your answer; feel free to cite any relevant theorems from the course notes. 

 

First of all, let’s settle the issue of what Θ-category T(N) belongs to: 
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Therefore, T(N) is Θ(N2 log N). 

 
 

a) The algorithm, on average, is 2( )N . 

 

False.  On average, N2 is strictly O(N2 log N); in other words, the Θ-bound on T(N) is strictly 

larger than N2, so N2 cannot be an upper bound for T(N). 
 

b) The algorithm, on average, is ( )N . 

 

True.  N2 log N is Ω(N); in other words, N is certainly a lower bound for N2 log N. 
 

c) The algorithm, on average, is 2( log )N N . 

 

True.  T(N) is Θ(N2 log N); so by definition T(N) is Ω(N2 log N). 
 

d) The algorithm, on average, is 
2( log )N N . 

 

True.  Proved above. 
 



CS 3114 Data Structures and Algorithms Homework 3:  Complexity 

 

You may work with a partner on this assignment. 2 

e) The algorithm, on average, is  3( )N . 

 

True.  On average, T(N) is Θ(N2 log N); and we can easily show that N2 log N is O(N3): 
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f) The algorithm, on average, is 
2( log )N N . 

 

False.  We showed that on average T(N) is Θ(N2 log N), and one part of that proof showed 

that 
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And, that shows that N2 log N is strictly Ω(N log2 N). 
 

g) In the worst case, the algorithm could be 3( )N . 

 

True.  We aren’t given any direct information about the worst case; however, it’s certainly 

possible that the worst case could be much worse than the average case, and we have already 

seen that N3 is a strict upper bound for the average case. 
 

h) In the worst case, the algorithm could be (log )N . 

 

True.  The worst case can certainly be no better than the average case, and the average case 

is Θ(N2 log N), which is certainly Ω(log N).  In fact, the worst case must be Ω(log N). 
 

i) In the worst case, the algorithm must be ( )N . 

 

True.  Similar logic to the previous part… worst cannot be better than average, and average is 

certainly Ω(N). 
 

j) The algorithm's best case performance is 2( log )N N . 

 

May be true, may be false.  The best case cannot be worse than the average case, and it 

could be the same; if so, this is true.  But, the best case might be considerably better than 

the average case; if so, this is false. 
 

k) The algorithm's best case performance cannot be ( log )N N . 

 

False.  The best case could be anything equal to, or better than, the average case. 
 

l) The algorithm's best case performance is strictly (log )N . 

 

May be true, may be false.  While unlikely, it’s possible the best case is Θ(1), in which case 

this is true.  On the other hand, the best case might be equal to, or worse than, log N. 
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2. [24 points] Suppose that an algorithm takes 30 seconds for an input of 2
24

 elements (with some particular, but unspecified 

speed in instructions per second).  Estimate how long the same algorithm, running on the same hardware, would take if 

the input contained 2
30

 elements, and that the algorithm's complexity function is: 

 

a) ( )N  

b) (log )N  

c) ( log )N N  

d) 2( )N  

 

Assume that the low-order terms of the complexity functions are insignificant, and state your answers in the form 

HH:MM:SS.S (hours, minutes, seconds, tenths of a second).  Be sure to show supporting work. 

 

It helps to start with the following observation.  Since the algorithm takes 30 seconds for an 

input of size 224, we know that if the hardware can execute S instructions per second T(224) / S = 

30 seconds. 

 

a) Suppose T(N) = N (we can ignore low-order terms).  Then  

 

T(230) / S = 230 / S = 26 * (224 / S) = 64 * 30 seconds = 32 minutes 

 

So, the running time would be about 00:32:00.0. 

 

b) Suppose T(N) = log N.  Then 

 

T(224) / S = log(224) / S = 24 / S 

and 

 

T(230) / S = log(230) / S = 30 / S = 1.25 * (24 / S) = 1.25 * 30 seconds = 37.5 seconds 

 

So, the running time would be about 00:00:37.5. 

 

c) Suppose T(N) = N log N.  Then 

 

T(224) / S = 224 log(224) / S = 24 * 224 / S 

and 

 

T(230) / S = 230 log(230) / S =  30 * 26 * 224 / S = 26 * 5/4 * (24 * 224 / S) 

= 80 * (24 * 224 / S) = 80 * 30 seconds = 40 minutes 

 

So, the running time would be about 00:40:00.0. 

 

d) Suppose T(N) = N2.  Then 

 

T(224) / S = 248 / S 

and 

T(230) / S = 260 / S = 212 * 248 / S = 4096 * 30 seconds = 2048 minutes 

 

So, the running time would be 34:08:00.0. 
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3. [18 points] Use theorems from the course notes to solve the following problems.  Show work to support your conclusions. 

 

a) Find the "simplest" function g(n) such that 
3/2

( ) 17 3 log 1000 is (g(n))f n n n n     

 

Since 
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we see that f(n) is Θ(n3/2). 
 

b) Find the "simplest" function g(n) such that  
2 2
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Since 
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we see that f(n) is Θ(n2 log n). 
 

c) Find the "simplest" function g(n) such that  

 ( ) log n+1000  is (g(n))f n n    

 

Since 
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we see that f(n) is Θ(n1/2). 
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4. [12 points] Using the counting rules from the course notes, find the exact-count complexity function T(n) for the 

following algorithm.  Show details of your analysis, and simplify your answer.  In simplifying, you may discard the floor 

notation. 

 
x = 100; // 1 

y = 0; // 1 

for (r = 1; r <= n; r++) { // 1 before; 2 per pass; 1 to exit 

   x = x + r; // 2 

   for (c = 2; c <= r; c = 2*c) { // 1 before; 3 per pass; 1 to exit 

      if ( x > y / c ) // 2 

         y = y + r / c; // 3 

      else 

         y = y – c; // 2 

   } 

} 

 

The costs per line are indicated above.  They lead to the following formula for T(n): 
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Detail:  the bounds on the inner loop come from the following observations.  Number the passes 

through the inner loop starting at p = 1.  Now, c takes on the values 2, 4, 8, and so forth.  So, 

on pass p, c = 2p.  Therefore, the loop continues as long as 

 

    
log2 2 logp rc r p r  

This is similar to the analysis of binary search shown in the course notes. 
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5. [10 points] Use the definition of Θ to prove that, if b is any positive constant, then 

 

 log(n+b) is log( )n  

 

proof: 

 

From the definition of Θ, we must show that there are constants C1 > 0, C2 > 0 and N > 0 such 

that whenever n > N we have that 

  
1 2
log log( ) logC n n b C n  

 

Now, b > 0, so n + b > n; and log() is an increasing function, so log(n+b) > log(n).  Therefore, we 

can show the left-hand inequality by taking C1 = 1 and N = 1. 

For the other side, suppose that n > b.  (That’s fair, since b is a constant.)  Then n + b < n + n, 

and so 

        log( ) log( ) log(2 ) log( ) 1 log( ) log( ) 2log( )n b n n n n n n n  

 

So, the right-hand inequality holds if we take C2 = 2 and say n > b. 

 

Putting it all together, we have that 

 

   if ,  log log( ) 2logn b n n b n  

 

Therefore, log(n + b) is Θ( log(n) ). 
 


