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Big-O Analysis  

Definition: Suppose that f(n) and g(n) are nonnegative functions of n.  Then we say 

that f(n) is O(g(n)) provided that there are constants C > 0 and N > 0 such 

that for all n > N, f(n)  Cg(n). 

Big-O expresses an upper bound on the growth rate of a function, for sufficiently large 

values of n. 

By the definition above, demonstrating that a function f is big-O of a function g requires 

that we find specific constants C and N for which the inequality holds (and show that the 

inequality does, in fact, hold). 
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Big-O Example  

Consider the following function: 
25 5
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We might guess that: 

We could easily verify the guess by induction: 

If n = 2, then T(2) = 17 which is less than 20, so the guess is valid if n = 2. 

Assume that for some n ≥ 2, T(n) ≤ 5n2.  Then: 
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Thus, by induction, T(n) ≤ 5n2 for all n ≥ 2.  So, by definition, T(n) is O(n2). 

2( ) 5  for all 2T n n n 
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Making the Guess  

The obvious question is "how do we come up with the guess in the first place"? 

 

Here's one possible analysis (which falls a bit short of being a proof): 
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The middle step seems sound since if n ≥ 2 then n ≤ n2, substituting n2 will thus add at 

least 5 to the expression, so that subtracting 2 should still result in a larger value. 
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Big-O Theorems  

For all the following theorems, assume that f(n) is a non-negative function of n and that K 

is an arbitrary positive constant. 

Theorem 2: A polynomial is O(the term containing the highest power of n) 

Theorem 3: K*f(n) is O(f(n))   [i.e., constant coefficients can be dropped] 

Theorem 1: K is O(1) 

)7( is 1000537)( 424 nOnnnnf 

)( is 7)( 44 nOnng 

Theorem 4: If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) is O(h(n)).  [transitivity] 

)( is 1000537)( 424 nOnnnnf 
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Big-O Theorems  

Theorem 5: Each of the following functions is strictly big-O of its successors: 

  K [constant] 

  logb(n) [always log base 2 if no base is shown] 

  n 

  n logb(n) 

  n2 

  n to higher powers 

  2n 

  3n 

  larger constants to the n-th power 

  n! [n factorial] 

  nn 

smaller 

larger 
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Big-O Theorems 

Theorem 6: In general, f(n) is big-O of the dominant term of f(n), where 

 “dominant” may usually be determined from Theorem 5. 

Theorem 7: For any base b, logb(n) is O(log(n)). 

)( is 10005)log(37)( 22 nOnnnnnf 

)3( is 100000037)( 4 nn Onng 

)( is ))log((7)( 2nOnnnnh 
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Big-Omega  

In addition to big-O, we may seek a lower bound on the growth of a function: 

Definition: Suppose that f(n) and g(n) are nonnegative functions of n.  Then we say 

that f(n) is (g(n)) provided that there are constants C > 0 and N > 0 such 

that for all n > N, f(n)  Cg(n). 

Big-  expresses a lower bound on the growth rate of a function, for sufficiently large 

values of n. 

Analagous theorems can be proved for big-Ω. 
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Big-Theta  

Finally, we may have two functions that grow at essentially the same rate: 

Definition: Suppose that f(n) and g(n) are nonnegative functions of n.  Then we say 

that f(n) is (g(n)) provided that f(n) is O(g(n)) and also that f(n) is 

(g(n)). 

If f is (g) then, from some point on, f is bounded below by one multiple of g and 

bounded above by another multiple of g (and vice versa). 

 

So, in a very basic sense f and g grow at the same rate. 
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Order and Limits 

The task of determining the order of a function is simplified considerably by the 

following result: 

Theorem 8: f(n) is (g(n)) if  
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Recall Theorem 7… we may easily prove it (and a bit more) by applying Theorem 8: 
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The last term is finite and positive, so logb(n) is (log(n)) by Theorem 8.  

Corollary:  if the limit above is 0 then f(n) is strictly O(g(n)), and  

 if the limit is  then f(n) is strictly (g(n)). 
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Order and Limits  

The converse of Theorem 8 is false.  However, it is possible to prove: 

Theorem 9: If f(n) is (g(n)) then  

 

 

provided that the limit exists. 
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A similar extension of the preceding corollary also follows. 
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More Theorems  

Many of the big-O theorems may be strengthened to statements about big-: 

Theorem 11: A polynomial is (the highest power of n). 

Theorem 10: If K > 0 is a constant, then K is (1). 
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proof:  Suppose a polynomial of degree k.  Then we have: 

Now ak > 0 since we assume the function is nonnegative.  So by Theorem 8, the 

polynomial is (nk). 

   QED 
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More Theorems  

Theorems 3, 6 and 7 can be similarly extended. 

Theorem 12: K*f(n) is (f(n))   [i.e., constant coefficients can be dropped] 

Theorem 13: In general, f(n) is big- of the dominant term of f(n), where 

 “dominant” may usually be determined from Theorem 5. 

Theorem 14: For any base b, logb(n) is (log(n)). 
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Strict Comparisons  

For convenience, we will say that: 

 - f is strictly O(g) if and only if f is O(g) but f is not Θ(g) 

 - f is strictly Ω(g) if and only if f is Ω(g) but f is not Θ(g) 

For example, n log n is strictly O(n2) by Theorem 8 and its corollary, because: 
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Big- Is an Equivalence Relation 

Theorem 17: If f(n) is (g(n)) and g(n) is (h(n)) then f(n) is (h(n)).  [transitivity] 

Theorem 16: If f(n) is (g(n)) then g(n) is (f(n)).  [symmetry] 

Theorem 15: If f(n) is (f(n)).  [reflexivity] 

By Theorems 15–17,  is an equivalence relation on the set of positive-valued functions. 

The equivalence classes represent fundamentally different growth rates. 

Algorithms whose complexity functions belong to the same class are essentially 

equivalent in performance (up to constant multiples, which are not unimportant in 

practice). 
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Applications to Algorithm Analysis 

Ex 1: An algorithm with complexity function 

                                    is (n2) by Theorem 11. 3
2
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Ex 2: An algorithm with complexity function 

                                                    is O(n log(n)) by Theorem 5.  

  Furthermore, the algorithm is also (n log(n)) by Theorem 8 since: 
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For most common complexity functions, it's this easy to determine the big-O and/or 

big- complexity using the given theorems. 
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Complexity of Linear Storage 

For a contiguous list of N elements, assuming each is equally likely to be the target of a 

search: 

 - average search cost is (N) if list is randomly ordered 

 - average search cost is (log N) is list is sorted  

 - average random insertion cost is (N) 

 - insertion at tail is (1) 

For a linked list of N elements, assuming each is equally likely to be the target of a 

search: 

 - average search cost is (N), regardless of list ordering 

 - average random insertion cost is (1), excluding search time 
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Most Common Complexity Classes 

Theorem 5 lists a collection of representatives of distinct big-Θ equivalence classes: 

 

  K [constant] 

  logb(n) [always log base 2 if no base is shown] 

  n 

  n logb(n) 

  n2 

  n to higher powers 

  2n 

  3n 

  larger constants to the n-th power 

  n! [n factorial] 

  nn 

 

Most common algorithms fall into one of these classes. 

 

Knowing this list provides some knowledge of how to compare and choose the right algorithm. 

The following charts provide some visual indication of how significant the differences are… 
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Graphical Comparison 

Common Growth Curves
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Lower-order Classes 

Low-order Curves
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For significantly large 

values of n, only these 

classes are truly 

practical, and whether 

n2 is practical is 

debated. 
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Proof of Theorem 8 

Theorem 8: f(n) is (g(n)) if  
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Suppose that f and g are non-negative functions of n, and that 
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Then, from the definition of the limit, for every ε > 0 there exists an N > 0 such that 

whenever n > N: 

( )
 from which we have ( ) ( ) ( ) ( ) ( )
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Let ε = c/2, then we have that: 
3
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Therefore, by definition, f is Θ(g). 


