
PR Quadtrees

 Data Structures & Algorithms

1

CS@VT ©2000-2015 McQuain

Organizing Spatial Data

Spatial data records include a sense of location as an attribute.

Typically location is represented by coordinate data (in 2D or 3D).

If we are to search spatial data using the locations as key values, we need data structures

that efficiently represent selecting among more than two alternatives during a search.

One approach for 2D data is to employ quadtrees, in which each internal node can have

up to four children, each representing a different region obtained by decomposing the

coordinate space.

There are a variety of such quadtrees, many of which are described in:

 The Quadtree and Related Hierarchical Data Structures, Hanan Samet

 ACM Computing Surveys, June 1984

PR Quadtrees

 Data Structures & Algorithms

2

CS@VT ©2000-2015 McQuain

Spatial Decomposition

In binary search trees, the structure of the tree depends not only upon what data values are

inserted, but also in what order they are inserted.

In contrast, the structure of a Point-Region quadtree is determined entirely by the data

values it contains, and is independent of the order of their insertion.

In effect, each node of a PR quadtree represents a particular region in a 2D coordinate

space.

Internal nodes have exactly 4 children (some may be empty), each representing a

different, congruent quadrant of the region represented by their parent node.

Internal nodes do not store data.

Leaf nodes hold a single data value. Therefore, the coordinate space is partitioned as

insertions are performed so that no region contains more than a single point.

PR quadtrees represent points in a finitely-bounded coordinate space.

PR Quadtrees

 Data Structures & Algorithms

3

CS@VT ©2000-2015 McQuain

Coordinate Space Partitioning

Consider the collection of points

in a 256 x 256 coordinate space:

A (100, 125)

B (25, -30)

C (-55, 80)

D (125, -60)

E (80, 80)

F (-80, -8)

G (-12, -112)

H (-48, -112)

J (16, 72)

K (60, 100)

L (48, 48)

M (36, 8)

N (4, 60)

P (28, 30)

M

L

128

128 -128

-128

C

B

E

D

K

F

A

J

H G

P

N

The subdivision of the coordinate space shows how it will be

partitioned as the points are added to a PR quadtree.

PR Quadtrees

 Data Structures & Algorithms

4

CS@VT ©2000-2015 McQuain

PR Quadtree Insertion

Obviously inserting the first point, A, just results in the creation

of a leaf node holding A.

Inserting B causes the partitioning of the original coordinate

space into four quadrants, and the replacement of the root with

an internal node with two nonempty children:

A (100, 125)

B (25, -30)

(-128,-128) to (128,128)

A(100, 125)

(0,0) to (128,128)

B(25, -30)

(0,-128) to (128,0)

none

(-128,-128) to (0,0)

none

(-128,0) to (0,128)

NW NE SE SW

The display above shows the SW and NE corners of the regions logically represented by

each node, and the data values stored in the leaf nodes.

In an implementation, nodes would not store information defining their regions explicitly,

nor would empty leaf nodes probably be allocated.

PR Quadtrees

 Data Structures & Algorithms

5

CS@VT ©2000-2015 McQuain

Leaf Splitting During Insertion

Inserting C does not cause any additional partitioning of the

coordinate space since it naturally falls into an empty leaf:

A (100, 125)

B (25, -30)

C (-55, 80)

D (125, -60)

Inserting D will cause the

partitioning of the SE

quadrant in order to separate

B and D:

(-128,-128) to (128,128)

A(100, 125)

(0,0) to (128,128)

B(25, -30)

(0,-64) to (64,0)

C(-55, 80)

(-128,0) to (0,128)

NW NE SE SW

(0,-128) to (128,0)

D(125, -60)

(64,-64) to (128,0)

NW NE SE SW

●

● ●

PR Quadtrees

 Data Structures & Algorithms

6

CS@VT ©2000-2015 McQuain

Multiple Splitting

Suppose the value E(80, 80) is now inserted into the tree. It falls in the same region as

the point A, (0, 0) to (128, 128).

However, dividing that region creates three empty

regions, and the region (64, 64) to (128, 128) in

which both A and E lie.

128

128

E

A

So, that region must be partitioned again. This separates A and E into two separate

regions (see illustration on the slide "Coordinate Space Partitioning").

If it had not, then the region in which they both occurred would be partitioned again, and

again if necessary, until they are separated.

PR Quadtrees

 Data Structures & Algorithms

7

CS@VT ©2000-2015 McQuain

Multiple Splitting

Inserting E results in the following tree: A (100, 125)

B (25, -30)

C (-55, 80)

D (125, -60)

E (80, 80)

C(-55, 80)

(-128,-128) to (0,0)

A(100, 125)

(96,96) to (128,128)

B(25, -30)

(0,-64) to (64,0)

(-128,-128) to (128,0)

D(125, -60)

(64,-64) to (128,0)

NW NE SE SW

(-128,-128) to (128,128)

NW NE SE SW

●

● ●

(0,0) to (128,128)

NW NE SE SW

● ● ●

(64,64) to (128,128)

NW NE SE SW

● ●

E(80, 80)

(64,64) to (96,96)

PR Quadtrees

 Data Structures & Algorithms

8

CS@VT ©2000-2015 McQuain

PR Quadtree Insertion

Insertion proceeds recursively, descending until the appropriate leaf node (possibly

empty) is found, and then partitioning and descending until there is no more than one

point within the region represented by each leaf.

It is possible for a single insertion to add many levels to the relevant subtree, if points lie

close enough together.

Of course, it is also possible for an insertion to require no splitting whatsoever.

The shape of the tree is entirely independent of the order in which the data elements are

added to it.

PR Quadtrees

 Data Structures & Algorithms

9

CS@VT ©2000-2015 McQuain

PR Quadtree Deletion

Deletion always involves removing a leaf node. Consider deleting A from the following

tree:

(-128,-128) to (128,128)

A(100, 125)

(0,0) to (128,128)

B(25, -30)

(0,-64) to (64,0)

C(-55, 80)

(-128,0) to (0,128)

NW NE SE SW

(0,-128) to (128,0)

D(125, -60)

(64,-64) to (128,0)

NW NE SE SW

●

● ●

PR Quadtrees

 Data Structures & Algorithms

10

CS@VT ©2000-2015 McQuain

PR Quadtree Deletion

Deletion always involves removing a leaf node. Consider deleting A from the following

tree:

(-128,-128) to (128,128)

B(25, -30)

(0,-64) to (64,0)

C(-55, 80)

(-128,0) to (0,128)

NW NE SE SW

(0,-128) to (128,0)

D(125, -60)

(64,-64) to (128,0)

NW NE SE SW

●

● ●

Setting the parent's pointer to null

removes the leaf node from the tree,

and no further action is required…

●

A(100, 125)

(0,0) to (128,128)

PR Quadtrees

 Data Structures & Algorithms

11

CS@VT ©2000-2015 McQuain

PR Quadtree Deletion

On the other hand, deleting a leaf node may cause its parent to "underflow":

(-128,-128) to (128,128)

B(25, -30)

(0,-64) to (64,0)

C(-55, 80)

(-128,0) to (0,128)

NW NE SE SW

(0,-128) to (128,0)

D(125, -60)

(64,-64) to (128,0)

NW NE SE SW

●

● ●

Consider deleting B:

●

Now, the parent node has only one

(nonempty) child, and hence there is no

reason that it must be split…

… so, we can "contract" the branch by

replacing the parent (internal) node with

the remaining child (leaf)…

●

PR Quadtrees

 Data Structures & Algorithms

12

CS@VT ©2000-2015 McQuain

PR Quadtree Deletion

Contracting the branch results in:

(-128,-128) to (128,128)

C(-55, 80)

(-128,0) to (0,128)

NW NE SE SW

D(125, -60)

(64,-64) to (128,0)

● ●

Of course, if the root node of this tree did not have another child, then the branch

contraction could continue…

PR Quadtrees

 Data Structures & Algorithms

13

CS@VT ©2000-2015 McQuain

PR Quadtree Achilles' Heel

If a data point that is inserted lies very close to another data point in the tree, it is possible

that many levels of partitioning will be required in order to separate them.

The minimum height of a PR quadtree is can be as large as

A B A B
C

2
log

s

d

where s is the length of a side of the "world" and d is the minimum distance between any

two data points in the tree.

PR Quadtrees

 Data Structures & Algorithms

14

CS@VT ©2000-2015 McQuain

PR Quadtree Using Buckets

The problem of "stalky" PR quadtree branches can be alleviated by allowing each leaf

node to store more than one data object, making the leaf a "bucket".

For example, if the quadtree leaf can store 5 data elements then it does not have to split

until we have 6 data points that fall within its region.

This complicates the implementation of the tree slightly, but can substantially reduce the

cost of search operations.

If buckets are used, then the minimum height of a PR quadtree is can be as large as

2
log

s

d

where s is the length of a side of the "world" and d is the minimum side of a square that

contains more data elements than a bucket can hold.

