
CS 3114 Data Structures and Algorithms Homework 2: Hashing

You may work with a partner on this assignment. 1

Prepare your answers to the following questions in a plain text file or typed MS Word document. Submit your file to the

Curator system by the posted deadline for this assignment. No late submissions will be accepted.

1. Consider a hash table consisting of M = 13 slots, and suppose nonnegative integer key values are hashed into the table

using the hash function h1():

long h1(long key) {

 long x = (key + 7) * (key + 7);

 x = x / 16;

 x = x + key;

 return x;

}

a) [10 points] Suppose that collisions are resolved by using linear probing. The integer key values listed below are to

be inserted, in the order given. Show the home slot (the slot to which the key hashes, before any probing), the

probe sequence (if any) for each key, and the final contents of the hash table after the following key values have

been inserted in the given order:

Key

Value

Home

Slot
Probe Sequence (if needed)

43

23

71

47

15

31

84

27

11

63

Final Hash Table:

Slot 0 1 2 3 4 5 6 7 8 9 10 11 12

Contents

CS 3114 Data Structures and Algorithms Homework 2: Hashing

You may work with a partner on this assignment. 2

b) [10 points] Suppose that collisions are resolved by using quadratic probing, with the probe function:

 2 / 2k k

 The integer key values listed below are to be inserted, in the order given. Show the home slot (the slot to which

the key hashes, before any probing), the probe sequence (if any) for each key, and the final contents of the hash

table after the following key values have been inserted in the given order:

Key

Value

Home

Slot
Probe Sequence (if needed)

43

23

71

47

15

31

84

27

11

63

Final Hash Table:

Slot 0 1 2 3 4 5 6 7 8 9 10 11 12

Contents

CS 3114 Data Structures and Algorithms Homework 2: Hashing

You may work with a partner on this assignment. 3

c) [10 points] Suppose that collisions are resolved by using double hashing (see the course notes), with the secondary

hash function Reverse(key), which reverses the digits of the key and returns that value; for example,

Reverse(7823) = 3287 and Reverse(7) = 7.

 The integer key values listed below are to be inserted, in the order given. Show the home slot (the slot to which

the key hashes, before any probing), the probe sequence (if any) for each key, and the final contents of the hash

table after the following key values have been inserted in the given order:

Key

Value

Home

Slot
Probe Sequence (if needed)

43

23

71

47

15

31

84

27

11

63

Final Hash Table:

Slot 0 1 2 3 4 5 6 7 8 9 10 11 12

Contents

2. [10 points] Consider implementing a hash table for an application in which we will build an initial hash table by

inserting a substantial collection of records. After this, we expect that the number of insertions and the number of

deletions performed to be roughly the same, although there may be long runs of consecutive insertions or consecutive

deletions. Furthermore, the table will use a probe strategy to resolve any collisions that occur during insertion, and

therefore we will "tombstone" cells from which a record has been deleted.

Could tombstoned cells be "recycled" during a subsequent insertion? That is, if we probe to a tomb stoned cell during

an insertion, can we use that tombstoned cell to store the new record (assuming we do insert it). Justify your

conclusion carefully.

3. Suppose you are implementing a hash table and are trying to choose between using a probing strategy and using

chaining (each slot is actually a linked list that can hold as many records as needed).

You will use the same hash function and hash table size no matter which strategy you select.

a) [10 points] A primary collision occurs when two records map to the same home slot in the table. Assuming you

insert the same set of records into the hash table, will the number of primary collisions be lower if you choose

linear probing or if you choose quadratic probing? Justify your conclusion carefully.

CS 3114 Data Structures and Algorithms Homework 2: Hashing

You may work with a partner on this assignment. 4

b) [10 points] One objection to using chaining is that you'll have to perform a linear traversal of the linked list to find

a record, and linear traversals are slow. Considering that, and assuming that a small but significant number of

primary collisions will occur, would searching be more efficient if you chose quadratic probing instead of

chaining? Justify your conclusion carefully.

4. [40 points] One way to compare the performance of several hash functions is to simulate the addition of a fixed

collection of records to a hash table, using each hash function, and counting the number of hits each slot in the table

receives. From that information, we can construct a histogram showing how many slots received one hit, how many

received two hits, and so forth. We can also calculate the average number of steps that a search would take.

For instance, given a collection of 1000 words and a hash function that computes a nonnegative integer from a string,

we might use a table size of 2000 and discover that:

of hits # of slots receiving that # of hits

0 1042

1 932

2 15

3 7

4 3

5 1

Assume that each slot in the hash table uses a linked list to hold the elements that collide in that slot. From that

information, we would then calculate that the average number of comparisons in a search would be about 1.064, since

the histogram above implies that:

 958 words would require 1 step (932 + 15 + 7 + 3 + 1)

 26 words would require 2 steps

 11 words would require 3 steps

 4 words would require 4 steps

 1 words would require 5 steps

Two files of strings are provided on the course website:

 WordData.txt 111,444 English words (somewhat loosely)

 CAFeatures.txt 97,497 names of geographic features related to California

Your task is to compare the performance of four different hash functions on the latter two files:

elfhash() classic elfhash function employing complex folding

sumnshift() string hasher employing more complex folding

FNVHash() another string hasher

DEKHash() Donald Knuth’s hash function from The Art of Computer Programming Vol3

Java code for each of the four functions is provided in the course notes or on the course website. You will implement

driver code to apply each of the hash functions to all of the strings in each of the latter two files and compute the results

needed to complete the table given below. The results for the first file are included below to help you validate your

logic.

In accordance with common guidelines for measuring performance, you will consider table sizes that are multiples of

the number of strings being hashed.

For each of the supplied data files, you’ll complete a table like the one shown below. The values I obtained for the

WordData.txt file and a slightly different version of the elfhash() function are shown.

CS 3114 Data Structures and Algorithms Homework 2: Hashing

You may work with a partner on this assignment. 5

Keys: WordData.txt 111444 strings

Hash fn load avg worst % < log N

elf 1.0 1.5428 8 100%

 1.2 1.4520 7 100%

 1.4 1.3612 7 100%

 1.6 1.3227 7 100%

 1.8 1.2797 6 100%

 2.0 1.3231 7 100%

The average number of steps is computed in the manner described in the example given on the previous page.

The worst case is the maximum number of steps that would be needed to find a word.

The last value (% < log N) is the percentage of the given strings that would be found in fewer than log N steps, where

N is the number of strings that were hashed.

You should note that it is NOT necessary to implement a fully-functional hash table in order to solve this assignment.

In fact, it may be counter-productive to do so. You may, and should, take advantage of the standard library.

Format your results in tables that look just like the example given above… failure to do that will irritate the person who

evaluates your results (and therefore result in deductions).

