
Asymptotics

Data Structures & Algorithms

1

CS@VT ©2000-2009 McQuain

Big-O Analysis

Definition: Suppose that f(n) and g(n) are nonnegative functions of n. Then we say

that f(n) is O(g(n)) provided that there are constants C > 0 and N > 0 such

that for all n > N, f(n) ≤ Cg(n).

Big-O expresses an upper bound on the growth rate of a function, for sufficiently large

values of n.

By the definition above, demonstrating that a function f is big-O of a function g requires

that we find specific constants C and N for which the inequality holds (and show that the

inequality does, in fact, hold).

Asymptotics

Data Structures & Algorithms

2

CS@VT ©2000-2009 McQuain

Big-O Example

Consider the following function:
25 5

() 2
2 2

T n n n= + +

We might guess that:

We could easily verify the guess by induction:

If n = 2, then T(2) = 17 which is less than 20, so the guess is valid if n = 2.

Assume that for some n ≥ 2, T(n) ≤ 5n2. Then:

2 2

2

2

2 2

5 5 5 5 5 5
(1) (1) (1) 2 5 2

2 2 2 2 2 2

5 5
2 5 5

2 2

5 5 5 by the inductive assumption

5 10 5 5(1)

T n n n n n n

n n n

n n

n n n

+ = + + + + = + + + + +

= + + + +

≤ + +

≤ + + = +

Thus, by induction, T(n) ≤ 5n2 for all n ≥ 2. So, by definition, T(n) is O(n2).

2() 5 for all 2T n n n≤ ≥

Asymptotics

Data Structures & Algorithms

3

CS@VT ©2000-2009 McQuain

Making the Guess

The obvious question is "how do we come up with the guess in the first place"?

Here's one possible analysis (which falls a bit short of being a proof):

2

2 2

2

5 5
() 2

2 2

5 5
2 2 (replace n with n^2, subtract 2)

2 2

 5

T n n n

n n

n

= + +

≤ + + −

=

The middle step seems sound since if n ≥ 2 then n ≤ n2, substituting n2 will thus add at

least 5 to the expression, so that subtracting 2 should still result in a larger value.

Asymptotics

Data Structures & Algorithms

4

CS@VT ©2000-2009 McQuain

Big-O Theorems

For all the following theorems, assume that f(n) is a non-negative function of n and that K

is an arbitrary constant.

Theorem 2: A polynomial is O(the term containing the highest power of n)

Theorem 3: K*f(n) is O(f(n)) [i.e., constant coefficients can be dropped]

Theorem 1: K is O(1)

)7(is 1000537)(424 nOnnnnf +++=

)(is 7)(44 nOnng =

Theorem 4: If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) is O(h(n)). [transitivity]

)(is 1000537)(424 nOnnnnf +++=

Asymptotics

Data Structures & Algorithms

5

CS@VT ©2000-2009 McQuain

Big-O Theorems

Theorem 5: Each of the following functions is strictly big-O of its successors:

K [constant]

logb(n) [always log base 2 if no base is shown]

n

n logb(n)

n2

n to higher powers

2n

3n

larger constants to the n-th power

n! [n factorial]

nn

smaller

larger

)2(and)(and))log((is)log(3)(2 nOnOnnOnnnf =

Asymptotics

Data Structures & Algorithms

6

CS@VT ©2000-2009 McQuain

Big-O Theorems

Theorem 6: In general, f(n) is big-O of the dominant term of f(n), where

“dominant” may usually be determined from Theorem 5.

Theorem 7: For any base b, logb(n) is O(log(n)).

)(is 10005)log(37)(22 nOnnnnnf +++=

)3(is 100000037)(4 nn Onng ++=

)(is))log((7)(2nOnnnnh +=

Asymptotics

Data Structures & Algorithms

7

CS@VT ©2000-2009 McQuain

Big-Omega

In addition to big-O, we may seek a lower bound on the growth of a function:

Definition: Suppose that f(n) and g(n) are nonnegative functions of n. Then we say

that f(n) is Ω(g(n)) provided that there are constants C > 0 and N > 0 such

that for all n > N, f(n) ≥ Cg(n).

Big- Ω expresses a lower bound on the growth rate of a function, for sufficiently large

values of n.

Analagous theorems can be proved for big-Ω.

Asymptotics

Data Structures & Algorithms

8

CS@VT ©2000-2009 McQuain

Big-Theta

Finally, we may have two functions that grow at essentially the same rate:

Definition: Suppose that f(n) and g(n) are nonnegative functions of n. Then we say

that f(n) is Θ(g(n)) provided that f(n) is O(g(n)) and also that f(n) is

Ω(g(n)).

If f is Θ(g) then, from some point on, f is bounded below by one multiple of g and

bounded above by another multiple of g (and vice versa).

So, in a very basic sense f and g grow at the same rate.

Asymptotics

Data Structures & Algorithms

9

CS@VT ©2000-2009 McQuain

Order and Limits

The task of determining the order of a function is simplified considerably by the

following result:

Theorem 8: f(n) is Θ(g(n)) if

∞<<=
∞→

cc
ng

nf

n
0 where

)(

)(
lim

Recall Theorem 7… we may easily prove it (and a bit more) by applying Theorem 8:

)ln(

)2ln(

)ln(

)2ln(
lim

)2ln(

1

)ln(

1

lim
)log(

)(log
lim

bb

n

bn

n

n

nn

b

n
===

∞→∞→∞→

The last term is finite and positive, so logb(n) is Θ(log(n)) by Theorem 8.

Corollary: if the limit above is 0 then f(n) is strictly O(g(n)), and

if the limit is ∞ then f(n) is strictly Ω(g(n)).

Asymptotics

Data Structures & Algorithms

10

CS@VT ©2000-2009 McQuain

Order and Limits

The converse of Theorem 8 is false. However, it is possible to prove:

Theorem 9: If f(n) is Θ(g(n)) then

provided that the limit exists.

∞<<=
∞→

cc
ng

nf

n
0 where

)(

)(
lim

A similar extension of the preceding corollary also follows.

Asymptotics

Data Structures & Algorithms

11

CS@VT ©2000-2009 McQuain

More Theorems

Many of the big-O theorems may be strengthened to statements about big-Θ:

Theorem 11: A polynomial is Θ(the highest power of n).

Theorem 10: If K > 0 is a constant, then K is Θ(1).

kk
k

kknk

k

k

n
aa

n

a

n

a

n

a

n

nanaa
=

++++=

+++ −
−∞→∞→

1

1

1010 limlim ⋯

⋯

proof: Suppose a polynomial of degree k. Then we have:

Now ak > 0 since we assume the function is nonnegative. So by Theorem 8, the

polynomial is Θ(nk).

QED

Asymptotics

Data Structures & Algorithms

12

CS@VT ©2000-2009 McQuain

More Theorems

Theorems 3, 6 and 7 can be similarly extended.

Theorem 12: K*f(n) is Θ(f(n)) [i.e., constant coefficients can be dropped]

Theorem 13: In general, f(n) is big-Θ of the dominant term of f(n), where

“dominant” may usually be determined from Theorem 5.

Theorem 14: For any base b, logb(n) is Θ(log(n)).

Asymptotics

Data Structures & Algorithms

13

CS@VT ©2000-2009 McQuain

Strict Comparisons

For convenience, we will say that:

- f is strictly O(g) if and only if f is O(g) but f is not Θ(g)

- f is strictlyΩ(g) if and only if f is Ω(g) but f is not Θ(g)

For example, n log n is strictly O(n2) by Theorem 8 and its corollary, because:

0
1

/1
lim

log
lim

log
lim

2
===

∞→∞→∞→

n

n

n

n

nn

nnn

Asymptotics

Data Structures & Algorithms

14

CS@VT ©2000-2009 McQuain

Big-Θ Is an Equivalence Relation

Theorem 17: If f(n) is Θ(g(n)) and g(n) is Θ(h(n)) then f(n) is Θ(h(n)). [transitivity]

Theorem 16: If f(n) is Θ(g(n)) then g(n) is Θ(f(n)). [symmetry]

Theorem 15: If f(n) is Θ(f(n)). [reflexivity]

By Theorems 15–17, Θ is an equivalence relation on the set of positive-valued functions.

The equivalence classes represent fundamentally different growth rates.

Algorithms whose complexity functions belong to the same class are essentially

equivalent in performance (up to constant multiples, which are not unimportant in

practice).

Asymptotics

Data Structures & Algorithms

15

CS@VT ©2000-2009 McQuain

Applications to Algorithm Analysis

Ex 1: An algorithm with complexity function

is Θ(n2) by Theorem 10.3
2

5

2

3
)(2 −+= nnnT

Ex 2: An algorithm with complexity function

is O(n log(n)) by Theorem 5.

Furthermore, the algorithm is also Θ(n log(n)) by Theorem 8 since:

2log4log3)(++= nnnnT

3
log

24
3lim

log

)(
lim =

++=

∞→∞→ nnnnn

nT

nn

For most common complexity functions, it's this easy to determine the big-O and/or

big-Θ complexity using the given theorems.

Asymptotics

Data Structures & Algorithms

16

CS@VT ©2000-2009 McQuain

Complexity of Linear Storage

For a contiguous list of N elements, assuming each is equally likely to be the target of a

search:

- average search cost is Θ(N) if list is randomly ordered

- average search cost is Θ(log N) is list is sorted

- average random insertion cost is Θ(N)

- insertion at tail is Θ(1)

For a linked list of N elements, assuming each is equally likely to be the target of a

search:

- average search cost is Θ(N), regardless of list ordering

- average random insertion cost is Θ(1), excluding search time

Asymptotics

Data Structures & Algorithms

17

CS@VT ©2000-2009 McQuain

Most Common Complexity Classes

Theorem 5 lists a collection of representatives of distinct big-Θ equivalence classes:

K [constant]

logb(n) [always log base 2 if no base is shown]

n

n logb(n)

n2

n to higher powers

2n

3n

larger constants to the n-th power

n! [n factorial]

nn

Most common algorithms fall into one of these classes.

Knowing this list provides some knowledge of how to compare and choose the right algorithm.

The following charts provide some visual indication of how significant the differences are…

Asymptotics

Data Structures & Algorithms

18

CS@VT ©2000-2009 McQuain

Graphical Comparison

Common Growth Curves

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11

n (input size)

log n

n

n log n

n^2

n^3

2^n

10^n

Asymptotics

Data Structures & Algorithms

19

CS@VT ©2000-2009 McQuain

Lower-order Classes

Low-order Curves

0

20

40

60

80

100

120

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

n (input s ize)

log n

n

n log n

n2

For significantly large

values of n, only these

classes are truly

practical, and whether

n2 is practical is

debated.

Asymptotics

Data Structures & Algorithms

20

CS@VT ©2000-2009 McQuain

Proof of Theorem 8

Theorem 8: f(n) is Θ(g(n)) if

∞<<=
∞→

cc
ng

nf

n
0 where

)(

)(
lim

Suppose that f and g are non-negative functions of n, and that

∞<<=
∞→

cc
ng

nf

n
0 where

)(

)(
lim

Then, from the definition of the limit, for every ε > 0 there exists an N > 0 such that

whenever n > N:

()
 from which we have () () () () ()

()

f n
c c g n f n c g n

g n
ε ε ε− < − ≤ ≤ +

Let ε = c/2, then we have that:
3

() () whence is ()
2

c
f n g n f g≤ Ο

() () whence is ()
2

c
g n f n f g≤ Ω

Therefore, by definition, f is Θ(g).

