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Big-O Analysis 

Definition: Suppose that f(n) and g(n) are nonnegative functions of n.  Then we say 

that f(n) is O(g(n)) provided that there are constants C > 0 and N > 0 such 

that for all n > N, f(n) ≤ Cg(n).

Big-O expresses an upper bound on the growth rate of a function, for sufficiently large 

values of n.

By the definition above, demonstrating that a function f is big-O of a function g requires 

that we find specific constants C and N for which the inequality holds (and show that the 

inequality does, in fact, hold).
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Big-O Example 

Consider the following function:
25 5
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We might guess that:

We could easily verify the guess by induction:

If n = 2, then T(2) = 17 which is less than 20, so the guess is valid if n = 2.

Assume that for some n ≥ 2, T(n) ≤ 5n2.  Then:
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Thus, by induction, T(n) ≤ 5n2 for all n ≥ 2.  So, by definition, T(n) is O(n2).
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Making the Guess 

The obvious question is "how do we come up with the guess in the first place"?

Here's one possible analysis (which falls a bit short of being a proof):
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The middle step seems sound since if n ≥ 2 then n ≤ n2, substituting n2 will thus add at 

least 5 to the expression, so that subtracting 2 should still result in a larger value.
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Big-O Theorems 

For all the following theorems, assume that f(n) is a non-negative function of n and that K 

is an arbitrary constant.

Theorem 2: A polynomial is O(the term containing the highest power of n)

Theorem 3: K*f(n) is O(f(n))   [i.e., constant coefficients can be dropped]

Theorem 1: K is O(1)

)7( is 1000537)( 424 nOnnnnf +++=

)( is 7)( 44 nOnng =

Theorem 4: If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) is O(h(n)).  [transitivity]

)( is 1000537)( 424 nOnnnnf +++=
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Big-O Theorems 

Theorem 5: Each of the following functions is strictly big-O of its successors:

K [constant]

logb(n) [always log base 2 if no base is shown]

n

n logb(n)

n2

n to higher powers

2n

3n

larger constants to the n-th power

n! [n factorial]
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Big-O Theorems

Theorem 6: In general, f(n) is big-O of the dominant term of f(n), where 

“dominant” may usually be determined from Theorem 5.

Theorem 7: For any base b, logb(n) is O(log(n)).

)( is 10005)log(37)( 22 nOnnnnnf +++=
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Big-Omega 

In addition to big-O, we may seek a lower bound on the growth of a function:

Definition: Suppose that f(n) and g(n) are nonnegative functions of n.  Then we say 

that f(n) is Ω(g(n)) provided that there are constants C > 0 and N > 0 such 

that for all n > N, f(n) ≥ Cg(n).

Big- Ω expresses a lower bound on the growth rate of a function, for sufficiently large 

values of n.

Analagous theorems can be proved for big-Ω.
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Big-Theta 

Finally, we may have two functions that grow at essentially the same rate:

Definition: Suppose that f(n) and g(n) are nonnegative functions of n.  Then we say 

that f(n) is Θ(g(n)) provided that f(n) is O(g(n)) and also that f(n) is 

Ω(g(n)).

If f is Θ(g) then, from some point on, f is bounded below by one multiple of g and 

bounded above by another multiple of g (and vice versa).

So, in a very basic sense f and g grow at the same rate.
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Order and Limits

The task of determining the order of a function is simplified considerably by the 

following result:

Theorem 8: f(n) is Θ(g(n)) if 
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Recall Theorem 7… we may easily prove it (and a bit more) by applying Theorem 8:
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The last term is finite and positive, so logb(n) is Θ(log(n)) by Theorem 8. 

Corollary:  if the limit above is 0 then f(n) is strictly O(g(n)), and 

if the limit is ∞ then f(n) is strictly Ω(g(n)).
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Order and Limits 

The converse of Theorem 8 is false.  However, it is possible to prove:

Theorem 9: If f(n) is Θ(g(n)) then 

provided that the limit exists.
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A similar extension of the preceding corollary also follows.
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More Theorems 

Many of the big-O theorems may be strengthened to statements about big-Θ:

Theorem 11: A polynomial is Θ(the highest power of n).

Theorem 10: If K > 0 is a constant, then K is Θ(1).
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proof: Suppose a polynomial of degree k.  Then we have:

Now ak > 0 since we assume the function is nonnegative.  So by Theorem 8, the 

polynomial is Θ(nk).

QED



Asymptotics

Data Structures & Algorithms

12

CS@VT ©2000-2009 McQuain

More Theorems 

Theorems 3, 6 and 7 can be similarly extended.

Theorem 12: K*f(n) is Θ(f(n))   [i.e., constant coefficients can be dropped]

Theorem 13: In general, f(n) is big-Θ of the dominant term of f(n), where 

“dominant” may usually be determined from Theorem 5.

Theorem 14: For any base b, logb(n) is Θ(log(n)).
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Strict Comparisons 

For convenience, we will say that:

- f is strictly O(g) if and only if f is O(g) but f is not Θ(g)

- f is strictlyΩ(g) if and only if f is Ω(g) but f is not Θ(g)

For example, n log n is strictly O(n2) by Theorem 8 and its corollary, because:
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Big-Θ Is an Equivalence Relation

Theorem 17: If f(n) is Θ(g(n)) and g(n) is Θ(h(n)) then f(n) is Θ(h(n)).  [transitivity]

Theorem 16: If f(n) is Θ(g(n)) then g(n) is Θ(f(n)).  [symmetry]

Theorem 15: If f(n) is Θ(f(n)).  [reflexivity]

By Theorems 15–17, Θ is an equivalence relation on the set of positive-valued functions.

The equivalence classes represent fundamentally different growth rates.

Algorithms whose complexity functions belong to the same class are essentially 

equivalent in performance (up to constant multiples, which are not unimportant in 

practice).
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Applications to Algorithm Analysis

Ex 1: An algorithm with complexity function

is Θ(n2) by Theorem 10.3
2
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Ex 2: An algorithm with complexity function

is O(n log(n)) by Theorem 5. 

Furthermore, the algorithm is also Θ(n log(n)) by Theorem 8 since:
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For most common complexity functions, it's this easy to determine the big-O and/or 

big-Θ complexity using the given theorems.
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Complexity of Linear Storage

For a contiguous list of N elements, assuming each is equally likely to be the target of a 

search:

- average search cost is Θ(N) if list is randomly ordered

- average search cost is Θ(log N) is list is sorted 

- average random insertion cost is Θ(N)

- insertion at tail is Θ(1)

For a linked list of N elements, assuming each is equally likely to be the target of a 

search:

- average search cost is Θ(N), regardless of list ordering

- average random insertion cost is Θ(1), excluding search time
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Most Common Complexity Classes

Theorem 5 lists a collection of representatives of distinct big-Θ equivalence classes:

K [constant]

logb(n) [always log base 2 if no base is shown]

n

n logb(n)

n2

n to higher powers

2n

3n

larger constants to the n-th power

n! [n factorial]

nn

Most common algorithms fall into one of these classes.

Knowing this list provides some knowledge of how to compare and choose the right algorithm.

The following charts provide some visual indication of how significant the differences are…
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Graphical Comparison

Common Growth Curves
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Lower-order Classes

Low-order Curves
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For significantly large 

values of n, only these 

classes are truly 

practical, and whether 

n2 is practical is 

debated.
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Proof of Theorem 8

Theorem 8: f(n) is Θ(g(n)) if 
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Suppose that f and g are non-negative functions of n, and that
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Then, from the definition of the limit, for every ε > 0 there exists an N > 0 such that 

whenever n > N:
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Let ε = c/2, then we have that:
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Therefore, by definition, f is Θ(g).


