
CS

A

Na

Ple

S 3114 Data S

 Print you

 There ar

 Legibilit

 This exa
may con
homewo

 No calcu
indicatio

 Until sol

 Failure t

 When yo

ame (Last, Firs

edge: On my

Structures and

ur name in the

re 6 short-answ

ty is a requirem

amination is clo
ntain definition
ork. You may i

ulators or other
on that you are

lutions are post

to adhere to any

ou have finishe

st)

 honor, I have

d Algorithms

space provided

wer questions, p

ment. Illegible r

osed book and
s and example
include examp

r computing de
finished with t

ted, you may n

y of these restr

ed, sign the ple

e neither give

K

READ TH

d below.

priced as marke

responses will

closed notes, a
s, but it may no
les from the co

evices may be u
the test and yo

not discuss this

rictions is an H

edge at the bott

en nor receive

EY

HIS NOW

ed. The maxim

be penalized!

aside from the
ot contain ques
ourse notes.

used. The use
ur test form wi

s examination w

Honor Code vio

tom of this pag

ed unauthoriz

W!

mum score is 1

permitted one-
stions and/or a

of any such de
ill be collected

with any studen

olation.

ge and turn in th

p

zed aid on thi

00.

-page fact shee
answers taken f

evice will be in
d immediately.

nt who has not

he test and you

printed

is examinatio

signed

Mi

et. Your fact sh
from old tests o

nterpreted as an

t taken it.

ur fact sheet.

on.

dterm

1

heet
or

n

CS 3114 Data Structures and Algorithms Midterm

A 2

1. [15 points] Prove the following Binary Tree Theorem:

Let T be a binary tree with λ levels. Then T has no more than 2λ – 1 nodes.

Proof:

Using strong induction on the number of levels, λ, let S be the set of all integers λ  1 such that if T is a binary
tree with λ levels then T has no more than 2 λ -1 nodes.

Base case: if λ = 1 then the tree only consists of a root node with no children. Thus there is one node which is
2 λ -1 if λ=1 and so 1  S.

Inductive assumption: suppose that for some integer K  1, all the integers 1 through K are in S. That is,
whenever a binary tree has M levels with M  K, it has at most 2M -1 leaf nodes.

Let T be a binary tree with K + 1 levels. If T has the maximum number of nodes, T consists of a root node and
two nonempty subtrees, say S1 and S2. Let S1 and S2 have M1and M2 levels, respectively. Since M1 and M2 are
between 1 and K, each is in S by the inductive assumption. Hence, the number of nodes in S1 and S2 are no
more than 2K -1and 2K -1, respectively. Since all the nodes of T must be nodes of S1 or of S2, the number of
nodes in T is no more than 2K -1+ 2K -1 + the root, which = 2K+1-2 + 1 = 2K+1 - 1 Therefore, K + 1 is in S.
Hence by Mathematical Induction, S = [1, ).

CS

A

2.

S 3114 Data S

[20 points] C
the current st
that it has a m
function may

Structures and

Complete the im
tate of the BST
member named
y call private he

d Algorithms

mplementation
T is complete a
d root and an
elper functions

of the followin
and full. The o
inner Binary

s, for which yo

ng BST memb
only relevant d
yNode class. Y

ou must show i

er function, wh
eclarations fro
You may not in
implementation

hich is intende
om the BST imp
nvoke other tre
ns.

Mi

ed to determine
plementation a
ee methods. Th

dterm

3

e if
are
he

CS 3114 Data Structures and Algorithms Midterm

A 4

3. Hash Table

a) [5 points] Suppose that a hash table implementation that uses linear probing to resolve collisions is initially
empty, and N records, all with unique key values, are inserted into the table. Among them are K records, R1
through RK, all of which map to the same home slot H in the hash table. If records are inserted in the order:
 R1, R2, R3, …, RK-2 RK-1, RK, and no other records have H as their home slot, what can be said about the minimum
number of slots that must be examined if we search for RK? Why?

K
Since the table is initially empty with linear probing being used, and the records R1 through
RK are inserted in a consecutive sequence of K cells, (possibly wrapping around the end). So,
any search for RK must begin in the home slot (holding R1) and proceed slot by slot until RK
is found (after K comparisons), this assumes the other N-K records map to slots that do not
interfere with the R1 through RK cluster for minimal probing.

b) [5 points] Assume the same conditions as given in part a). What can be said about the maximum number of slots
that must be examined if we search for RK? Why?

N
In the worst case, the insertion of the other N-K records will map to slots that interfere
with the R1 through RK cluster.

c) [5 points] Would either answer above change if chaining were used to resolve collisions? Why?

It would have no effect on the answer for question a. However, the answer for question b
would become K since the insertion of the other N-K records will map to buckets that do not
interfere with R1 through RK bucket.

d) [5 points] Consider the following idea to eliminate tombstones. When deleting an element from the hash table,
search for the element to be removed, when located continue the probing, (either linear or quadratic), until the last
element in the probe sequence is found. Replace the deleted element with the last probe sequence element and
mark the last probe sequence element’s location as empty. Discuss whether this idea will work or whether it can
be made to work.

This idea will not work since the last element in the probe sequence could have been inserted
at its location due to a collision (or hashing) at a table location after the deleted element in
linear probing or at a different location (or hashing) other than the deleted element in
quadratic probing.

The only way this could be made to work would be to check each element along the probe
sequence (either linear or quadratic) to confirm that it hashed to the same location as the
element to be deleted. Only in this special circumstance could the last element of the
sequence safely be moved to replace the deleted element.

CS 3114 Data Structures and Algorithms Midterm

A 5

4. [20 points] A HDMI 1080p high-definition image has resolution 1920 x 1080 (width x height). In video there is often
very little change in an image from one frame to the next. Many video codecs take advantage of this by only storing
the regions of an image that has changed between frames.

a) Since PRQuadTrees require a square region you must set the world coordinate boundaries for the image data
below to be (0, 0) .. (1920, 1920).

Draw the subdivision of the coordinate space, labeled appropriately, that would result from storing the following pixel
coordinates, A-G, in a PRQuadTree, as a 2D diagram showing the partitions and the data point letter labels.

Insert the values in this order:

A(50, 1700), B(30, 1900), C(300, 1500), D(100, 1000), E(220, 1880), F(810, 440), G(880, 1244)

G

0,0

1920, 1920

960

960

1440

480
E

F

A

D

C

240

1680

B

CS 3114 Data Structures and Algorithms Midterm

A 6

4.
b) Draw (or describe) how the subdivision partitioning of the coordinate space in part a) would change if the points

were inserted into the PRQuadTree in the reverse order, i.e. G, F, E, D, C, B, A.

There would be no change. The structure of a PR Quadtree is independent of the order of insertion of the data.

CS 3114 Data Structures and Algorithms Midterm

A 7

5. [10 points] Heap

Given the following initial array representation:

0 1 2 3 4 5 6 7 8 9 10 11 12
R M D X B P F Z A K H S J

 Complete the diagrams below to show the building of a min-heap. Show the array contents after the completed

sifting of each element. Note that the heap root is stored at index zero.

0 1 2 3 4 5 6 7 8 9 10 11 12
R M D X B J F Z A K H S P

0 1 2 3 4 5 6 7 8 9 10 11 12
R M D X B J F Z A K H S P

0 1 2 3 4 5 6 7 8 9 10 11 12
R M D A B J F Z X K H S P

0 1 2 3 4 5 6 7 8 9 10 11 12
R M D A B J F Z X K H S P

0 1 2 3 4 5 6 7 8 9 10 11 12
R A D M B J F Z X K H S P

0 1 2 3 4 5 6 7 8 9 10 11 12
A B D M H J F Z X K R S P

Diagrams below are not part of the required answer.

 initial tree after lowest level sifting

Z A K H S J

R

M D

P FX B

Z X K H S P

R

M D

J FA B

Z X K H S P

R

A D

J FM B

Z X K R S P

A

B D

J FM H

CS 3114 Data Structures and Algorithms Midterm

A 8

6. Consider the implementation and performance issues related to Pugh's probabilistic skiplist.

a) [10 points] Suppose as a slight variation to the implementation of a skip list as discussed in lecture, it is proposed

that, in addition to the reference to the head node, a current node reference is also maintained. The current node
reference will always be set to point to the node containing the element that was found in the last successful
search.

Carefully explain in detail how the skip list search algorithm could take advantage of the current node reference.
Do not give code.

The search could be modified to first compare the current node element with the target.
Case 1: If the target equals the current element then the search ends successfully.

Case 2: If the target is less than the current element then the search must begin at the head node normally.

Case 3: If the target is greater than the current element then it depends upon the level of the current node:

sub-case a: if the level of the current node is equal to the level of the head node the search begins
at the current node.

sub-case b: if the level of the current node is shorter than the level of the head node the search
should first start with the head node to determine if nodes past the current node can be skipped.
(further explanation, not required) If any node element, reached from the head node by examining
the levels higher than the current node, is greater than the current element but less than the target the
current node is ignored in the search. If any node element, reached from the head node by examining
the levels higher than the current node, is equal to the target the search ends successfully. If any node
element, reached from the head node by examining the levels higher than the current node, is less than
the current element the search starts at the current node.

b) [5 points] Describe how you would implement an efficient intersection algorithm in a SkipList class as a member

method. The intersection operation will return a skip list object containing the common elements in the two skip
lists. The two skip lists involved in the intersection must be unchanged by the operation. Do not give code.

A semi-efficient algorithm would be to simply perform a level zero traversal of the elements of one skip list
and search for each element in the other skip list, inserting it into the intersection skip list if found. This
algorithm would be O(nlogn).

A more efficient algorithm would be to traverse both skip lists concurrently. Starting at the head of both
lists, if they are equal insert one into the intersection skip list and move to the next zero level element in
both lists and continue. If they are not equal search for the larger of the two in the other skip list taking
advantage of the level skip pointers. Stopping and inserting in the intersection when found. When not
found the search must stop at the largest element less than the target and the search must switch to the
other skip list to try and find the element stopped at in the prior search. This search must also take
advantage of the level skip pointers. Any time a search is successful an insertion in the intersection is made
and the next zero level element in both lists is used to continue. Any time a search is not successful the
search switches to the other skip list as described previously.

The worst case would occur when the smaller list is a subset of the larger list and the last elements in both
lists are the same. Thus the worst case efficiency of this algorithm would O(n + m + mlogm) where n & m
are the lengths of the two skip lists & m < n, (i.e., the time to traverse both lists plus the time to insert all the
common elements into the intersection skip list).

