
Perfect Hash Fns

 Data Structures & Algorithms

1

CS@VT ©2000-2015 McQuain, Barnette

Perfect Hash Functions

In most general applications, we cannot know exactly what set of key values will need

to be hashed until the hash function and table have been designed and put to use.

At that point, changing the hash function or changing the size of the table will be

extremely expensive since either would require re-hashing every key.

A perfect hash function is one that maps the set of actual key values to the table without

any collisions.

A minimal perfect hash function does so using a table that has only as many slots as

there are key values to be hashed.

If the set of keys IS known in advance, it is possible to construct a specialized hash

function that is perfect, perhaps even minimal perfect.

Algorithms for constructing perfect hash functions tend to be tedious, but a number are

known.

Perfect Hash Fns

 Data Structures & Algorithms

2

CS@VT ©2000-2015 McQuain, Barnette

Cichelli’s Method

This is used primarily when it is necessary to hash a relatively small collection of keys,

such as the set of reserved words for a programming language.

The basic formula is:

h(S) = S.length() + g(S[0]) + g(S[S.length()-1])

where g() is constructed using Cichelli’s algorithm so that h() will return a different

hash value for each word in the set.

The algorithm has three phases:

 - computation of the letter frequencies in the words

 - ordering the words

 - searching

Perfect Hash Fns

 Data Structures & Algorithms

3

CS@VT ©2000-2015 McQuain, Barnette

Cichelli’s Method

Suppose we need to hash the words in the list below:

calliope

clio

erato

euterpe

melpomene

polyhymnia

terpsichore

thalia

urania

Determine the frequency with which each first and last letter

occurs:

letter: e a c o t m p u

freq: 6 3 2 2 2 1 1 1

Score the words by summing the frequencies of their first and

last letters, and then sort them in descending order:

calliope 8

clio 4

erato 8

euterpe 12

melpomene 7

polyhymnia 4

terpsichore 8

thalia 5

urania 4

euterpe

calliope

erato

terpsichore

melpomene

thalia

clio

polyhymnia

urania

Perfect Hash Fns

 Data Structures & Algorithms

4

CS@VT ©2000-2015 McQuain, Barnette

Cichelli’s Method

Finally, consider the words in order and define g(x) for each possible first and last

letter in such a way that each of the words will have a distinct hash value:

word g_value assigned h(word) table slot

euterpe e-->0 7 7 ok

calliope c-->0 8 8 ok

erato o-->0 5 5 ok

terpsichore t-->0 11 2 ok

melpomene m-->0 9 0 ok

thalia a-->0 6 6 ok

clio none 4 4 ok

polyhymnia p-->0 10 1 ok

urania u-->0 6 6 reject

 u-->1 7 7 reject

 u-->2 8 8 reject

 u-->3 9 0 reject

 u-->4 10 1 reject

Perfect Hash Fns

 Data Structures & Algorithms

5

CS@VT ©2000-2015 McQuain, Barnette

Cichelli’s Method

Cichelli’s method imposes a limit on the search at this point (we’re assuming it’s 5

steps), and so we back up to the previous word and redefine the mapping there:

word g_value assigned h(word) table slot

polyhymnia p-->0 10 1 reject

 p-->1 11 2 reject

 p-->2 12 3

urania u-->0 6 6 reject

 u-->1 7 7 reject

 u-->2 8 8 reject

 u-->3 9 0 reject

 u-->4 10 1 ok

So, if we define g() as determined above, then h() will be a minimal perfect hash

function on the given set of words.

The primary difficulty is the cost, because the search phase can degenerate to

exponential performance, and so it is only practical for small sets of words.

Perfect Hash Fns

 Data Structures & Algorithms

6

CS@VT ©2000-2015 McQuain, Barnette

Cuckoo Hashing

A duplex hash strategy to achieve worst case searching of Q(1) using the power of

choice.

Two tables (size = # items) are employed each with a separate hash function. A key is

hashed by the two different functions and will always be located in the first or second

table. Thus only two lookups are ever required to find an item.

Hash Fn table 1: h(k) = k mod m Hash Fn table 2: g(k) = 1 + k mod (m-1),

where m = table size, (8)

T1 36 22 84 68 17 14 13 65

0

1

2

3

4 36 84

5

6 22

7

T2 36 22 84 68 17 14 13 65

0

1 84

2

3

4

5

6

7

W

On the third insert, 84 collides

with 36 in table 1. Thus it is

inserted in table 2 where no

collision occurs.

Standard Cuckoo

hashing does not

automatically

check table 2

when a collision

occurs in a table 1

insert.

Perfect Hash Fns

 Data Structures & Algorithms

7

CS@VT ©2000-2015 McQuain, Barnette

Cuckoo Hashing

The fourth & fifth inserts cause no displacements. On the sixth insert, 14 collides with

22 in table 1. When 14 is inserted in table 2 it displaces 84 sending it back to table 1

which results in 36 being displaced from table 1. The displacements end when 36 is

inserted into table 2.

Hash Fn table 1: h(k) = k mod m Hash Fn table 2: g(k) = 1 + k mod (m-1),

where m = table size, (8)

T1 36 22 84 68 17 14 13 65

0

1 17

2

3

4 36 84 68

5

6 22 14

7

T2 36 22 84 68 17 14 13 65

0

1 84 14

2 36

3

4

5

6 68

7

W

W

W

W

Perfect Hash Fns

 Data Structures & Algorithms

8

CS@VT ©2000-2015 McQuain, Barnette

Cuckoo Hashing

The last two inserts result in no displacements.

Hash Fn table 1: h(k) = k mod m Hash Fn table 2: g(k) = 1 + k mod (m-1),

where m = table size, (8)

T1 36 22 84 68 17 14 13 65

0

1 17 65

2

3

4 36 84 68

5 13

6 22 14

7

T2 36 22 84 68 17 14 13 65

0

1 84 14

2 36

3 65

4

5

6 68

7

W

W

W

W

W

Perfect Hash Fns

 Data Structures & Algorithms

9

CS@VT ©2000-2015 McQuain, Barnette

Cuckoo Hashing

Table displacements may result in a cycle which must be

detected.

If each table load factor is < 50% then the probability of a

cycle is quite small, with a small constant of displacements

and most insertions will need only O(log N) displacements.

Thus tables may need to be rebuilt with different hash

functions if a number of displacements (log N + very small

constant) occurs during insertion.

key h(k) g(k)

36 4 2

22 6 2

84 4 1

68 4 6

17 1 4

14 6 1

13 5 7

65 1 3

Cuckoo hashing requires a set of hash Fns, (many standard hash Fns perform poorly in

cuckoo hashing). Cuckoo hashing guarantees worst-case constant lookup, trivial deletion

and constant insertion if the load factor, l < 50%. The expected insertion cost bound is:

 1

1 − 4l
2 1/3

