
Intro to Eclipse

Data Structures and Algorithms

1

CS@VT February 2010 ©2010 McQuain

Prerequisites for Eclipse

To use Eclipse you must have an installed version of the Java Runtime Environment (JRE).

The latest version is available from java.com/en/download/manual.jsp

Since Eclipse includes its own Java compiler, it is not strictly necessary to have a version

of the Java Development Kit (JDK) installed on your computer.

However, I recommend installing one anyway so that you can test your code against the

"real" Java compiler.

The latest version is available from: java.sun.com/

If you install the JDK, I recommend putting it in a root-level directory; my copy is
installed in E:\jdk1.6.0_14.

http://java.com/en/download/manual.jsp
http://java.sun.com/

Intro to Eclipse

Data Structures and Algorithms

2

CS@VT February 2010 ©2010 McQuain

Getting Eclipse for Java Development

Go to www.eclipse.org and click on Download Eclipse:

Select the Eclipse IDE for C/D++ development:

Download the distribution:

http://www.eclipse.org/

Intro to Eclipse

Data Structures and Algorithms

3

CS@VT February 2010 ©2010 McQuain

Installing Eclipse

Unzip the distribution in an appropriate location.

If you’ve already got another version, say Eclipse for C/C++ installed, I recommend

placing this in a different directory tree.

In this case, I'm installing Eclipse to F:\eclipse. Note: the contents of the zip archive

are already packed in a directory named eclipse, so I specified that the extraction

should be to F:\. Avoid spaces in the path to Eclipse.

I find it useful to put a shortcut on my desktop; find eclipse.exe in the root directory

of the installation and drag to the desktop to create a shortcut.

Intro to Eclipse

Data Structures and Algorithms

4

CS@VT February 2010 ©2010 McQuain

Configuring Eclipse

The first time you start Eclipse, you'll be asked to specify a location for the Eclipse

Workspace; this is where Eclipse will, by default, keep your programming projects:

This can be anything you like. I set this to be F:\JavaWorkspace for my examples.

Intro to Eclipse

Data Structures and Algorithms

5

CS@VT February 2010 ©2010 McQuain

Start Eclipse

The initial startup looks like:

Feel free to explore the options offered here… I'm going to the Workbench…

Feature

overview

What's

new?

Samples

Go to the

Workbench

Access

included

tutorials

Intro to Eclipse

Data Structures and Algorithms

6

CS@VT February 2010 ©2010 McQuain

Eclipse Workbench

The initial Eclipse workbench:

Eventually you'll want to use all of this, but let's clean it up a bit for a start…

Intro to Eclipse

Data Structures and Algorithms

7

CS@VT February 2010 ©2010 McQuain

Eclipse Workbench

The initial Eclipse workbench:

For now, I'll minimize the Task List and Outline Views on the right side of the Eclipse

workbench, and the Problems/Javadoc/Declaration Views at the bottom…

Minimizing an Eclipse View reduces it to a graphic like that shown below:

Minimize View

Maximize View

Restore View

Hover for info…

Intro to Eclipse

Data Structures and Algorithms

8

CS@VT February 2010 ©2010 McQuain

Creating a New Java Project

In the Workbench, select File/New/Java Project:

Enter a name for the Project.

For now, just take the defaults for the remaining

options.

Click Next and then Finish in the next dialog.

Intro to Eclipse

Data Structures and Algorithms

9

CS@VT February 2010 ©2010 McQuain

Adding a Class

The new Project will show up in the

Package Explorer View.

Now, select File/New/Class…

Call the class HelloWorld.

Check the box to add a public static void main()

method.

Ignore the Eclipse warning about using the default

package. Click Finish.

Intro to Eclipse

Data Structures and Algorithms

10

CS@VT February 2010 ©2010 McQuain

Performing a Build

Save the source file (not saved automatically).

Use the Project menu or click on the Build All button ().

Any errors would be shown in the Problems View (should be none):

Intro to Eclipse

Data Structures and Algorithms

11

CS@VT February 2010 ©2010 McQuain

Running the Program

To execute the program, click on the Run button ():

A Console View opens, showing the output to System.out:

Intro to Eclipse

Data Structures and Algorithms

12

CS@VT February 2010 ©2010 McQuain

The Preferences Dialog

Go to Window/Preferences to open the Preferences dialog:

There are lots of options

here…

… I have a few

recommendations regarding

the defaults…

Intro to Eclipse

Data Structures and Algorithms

13

CS@VT February 2010 ©2010 McQuain

Some Suggested Settings

Under General/Workspace:

- set "Save automatically before build" so you do not have to manually save each time

you want to compile your code

- unset "Build automatically"; this feature can be immensely annoying, especially on a

slower machine

Under General/Text Editors:

- set the tab display width to your preference (I find 3 ideal)

- some programmers like to replace tabs with actual spaces

- set "Show line numbers"… very useful with dealing with command-line or Ant

builds later on

- under Spelling: decide how much spell-checking you want

- under Keys: customize keyboard shortcuts, if you want

There are many other options here; some are safe to change and some are not. Explore

carefully.

Intro to Eclipse

Data Structures and Algorithms

14

CS@VT February 2010 ©2010 McQuain

Projects and Packages: BST Assignment

In the Workbench, select File/New/Java Project:

As before, enter a name for the Project.

For now, just take the defaults for the remaining

options.

Click Next…

Intro to Eclipse

Data Structures and Algorithms

15

CS@VT February 2010 ©2010 McQuain

Projects and Packages: BST Assignment

From the course Projects page, download the supplied zip file and unzip it in the src

directory in the BST project tree:

There should now be a subtree in the directory

structure:

testDriver.java

Monk.java

Two classes have been added, testDriver and Monk.

Monk is in a package named MinorP1.DS and organized in a matching directory tree.

Be sure to select "keep folders" or a similar option when unzipping the supplied file.

Intro to Eclipse

Data Structures and Algorithms

16

CS@VT February 2010 ©2010 McQuain

Refreshing Eclipse's View

Right-click on the BST project icon and select Refresh on the resulting menu (or press F5):

This will cause Eclipse to recognize the added

files:

Intro to Eclipse

Data Structures and Algorithms

17

CS@VT February 2010 ©2010 McQuain

Add the BST Class

Go to File/New/Class and add the BST class:

By default, Eclipse will add the new

class to the (single) package that exists

in the project definition.

The source file will be in the DS

subdirectory since it's in the package.

You may choose to have Eclipse

generate default comment blocks if you

want…

Now, just write your BST

implementation and test it…

Intro to Eclipse

Data Structures and Algorithms

18

CS@VT February 2010 ©2010 McQuain

Setting Command-line Arguments

The supplied test driver needs to have a command-line argument in order to run correctly.

Go to the drop-list for the Run button and select Run configurations…

Expand the Java Application tree, select testDriver, then select the Arguments tab…

… enter –prof as shown…

Intro to Eclipse

Data Structures and Algorithms

19

CS@VT February 2010 ©2010 McQuain

Executing the Program

Once you have written enough code to get things to compile, click the Run button.

In this case, there shouldn't be any output in the Console view (see earlier slide).

Go to File/Open file and navigate to the directory where you placed the BST project:

The log files created by the test

driver will be in the top-level

directory for the project.

You can open them in Eclipse to

check the results.

If you want to re-run the test driver

with the same data as the last run, go

to the Run configuration dialog and

remove the command-line argument.

Intro to Eclipse

Data Structures and Algorithms

20

CS@VT February 2010 ©2010 McQuain

Controlling Execution with Breakpoints

If you need to examine details of your program's execution, Eclipse provides an integrated

debugger.

The first step is usually to set one or more breakpoints:

- pick a line of code at which you want to pause the program

- right-click in the left margin, and select Toggle Breakpoint from the menu

For example:

The blue circle indicates that a breakpoint is set at that line…

Select Run/Debug and click Yes in the following dialog…

Intro to Eclipse

Data Structures and Algorithms

21

CS@VT February 2010 ©2010 McQuain

Debug View

This opens the Debug View:

You may see a different window layout; feel free to close other Views, like Outline if they

are visible.

Intro to Eclipse

Data Structures and Algorithms

22

CS@VT February 2010 ©2010 McQuain

Viewing Variables in Real Time

Note that your program is suspended at the breakpoint you set:

In the Variables view, you can see current values for the variables that are "active".

I find it useful to open the Editor area…

Intro to Eclipse

Data Structures and Algorithms

23

CS@VT February 2010 ©2010 McQuain

Step-by-step Execution

Now I want to step through the code, line by line, and check results:

Click the Step-into button until the highlight reaches the instantiation of a BST object…

Intro to Eclipse

Data Structures and Algorithms

24

CS@VT February 2010 ©2010 McQuain

Step-by-step Execution

Click the Step-over button here:

Check the Variables view… you should see an entry for Tree…

Intro to Eclipse

Data Structures and Algorithms

25

CS@VT February 2010 ©2010 McQuain

Viewing the Tree

Expand the tree for Tree:

This shows the data members of the object Tree (not too exciting just yet)…

You can use this approach to watch your program run in enormous detail, which may reveal

that it's not doing what you intended…

When you're ready to exit the Debug View, you can terminate your program by using the

stop button () and then click the Java button in the upper-right corner to switch back to

development mode.

Intro to Eclipse

Data Structures and Algorithms

26

CS@VT February 2010 ©2010 McQuain

Step-over versus Step-into

The difference is that if you are executing a method call (or invoking new, for example) in

the current statement:

step-into takes you into the implementation of that method

step-over calls the method, but does not step you through its execution

Both are useful… step-into is frustrating when system code is involved.

Intro to Eclipse

Data Structures and Algorithms

27

CS@VT February 2010 ©2010 McQuain

More Debugging

Remove the earlier break-point and set one at the statement inside the Monk method

testInsertion() that instantiates a BST named T1:

Run this in debug mode…

Intro to Eclipse

Data Structures and Algorithms

28

CS@VT February 2010 ©2010 McQuain

Viewing a More Complex Tree

Use step-over twice to construct the empty tree and to generate a random value to insert
into it; then use step-into and see what your insert() method does…

… stepping along until the insert() method returns:

The Variables View now shows the
structure of the BST T1 after the

insertion of the first value:

BTW, if you expand the tree for
this, you may get an interesting

experience… I leave it to you to

decide if Eclipse is being sensible…

Intro to Eclipse

Data Structures and Algorithms

29

CS@VT February 2010 ©2010 McQuain

Viewing a More Complex Tree

Set another breakpoint at the following line of code in Monk:

BST<Integer>.BinaryNode rootAddress = T1.root;

Click the Resume () button to execute up to the new breakpoint, and look at T1 now:

There's T1.root…

and the left child…

and the right child…

