
Computer Chess © 1985‐2015, D Barnette

Computer Chess © 1985‐2015, D Barnette

Board Representation

8 x 8 Matrix
• Problem: doubles subscript computation

Array (64)
• Subscript range checking: every movegenerated must be checked
• Illegal moves easily generated: exampleKing on square 8, adding 1 generates

moveto square 9

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

57 58 59 60 61 62 63 64

49 50 51 52 53 54 55 56

41 42 43 44 45 46 47 48

33 34 35 36 37 38 39 40

25 26 27 28 29 30 31 32

17 18 19 20 21 22 23 24

Computer Chess © 1985‐2015, D Barnette

Board Representation: Array 120

Illegal Move Detection
Assume Machine plays White:
CASE destination square value

7 : Off Board Move
1 . . . 6 : Square occupied by Machine‘s piece

0 : open square
< 0 : capturing move

Move Generation
• Routine required for each type of piece
• Piece location passed as parameter

7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7

7 ‐4 ‐2 ‐3 ‐6 ‐5 ‐3 ‐2 ‐4 7

7 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 ‐1 7

7 1 1 1 1 1 1 1 1 7

7 4 2 3 6 5 3 2 4 7

7 0 0 0 0 0 0 0 0 7

7 0 0 0 0 0 0 0 0 7

7 0 0 0 0 0 0 0 0 7

7 0 0 0 0 0 0 0 0 7

1 2 3 4 5 6 7 8 9 10

111 112 113 114 115 116 117 118 119 120

‐4 ‐3 ‐5 ‐6 ‐2 ‐1

4 3 5 6 2 1

Computer Chess © 1985‐2015, D Barnette

Board Representation: Array 120
Move Generation

Kings, Knights, pawns move number applied only once.

Queens, Bishops, Rooks move number applied repeatedly until off board
square or occupied square generated.

9 10 11

‐1 1

‐11 ‐10 ‐9

9 10 11

‐1 1

‐11 ‐10 ‐9

10

‐1 1

‐10

9 11

‐11 ‐9

9 10 11

‐11 ‐10 ‐9

19 21

8 12

‐12 ‐8

‐21 ‐19

Computer Chess © 1985‐2015, D Barnette

Bit-Board Representation

• 64 Bits, 1 per square, used to store pieces’ locations
• Bit value:

• 1 = represents a piece
• 0 = empty square

• 12 x 64 bits to store a position
• 6 white pieces
• 6 black pieces
• 64 bits for each different type of piece:

King, Queen, Bishop, Knight, Rook, Pawn
• 2 extra words are used to store all piece locations

for both sides for efficient move generation

Computer Chess © 1985‐2015, D Barnette

Bit-Board Move Generation

• For each type of piece all possible moves for every
square must be stored6 x 64 x 64 = 3K bytes

• Move bit-maps are searched for the piece to be moved &
the square piece is on to locate piece move bit-map

• Logical operations are performed to generate legal
bit-map moves:

• Generates bit-map for all legal piece moves
in a given position

& (piece move bit-map,~(bit-map  pieces of moving side))

Computer Chess © 1985‐2015, D Barnette

Bit-Map Move Generation
Bit-Map  possible Knight moves from E3 (21)
0001010000100010000000000010001000010100 
1234567890123456789012345678901234567890 

1 2 3 4

Bit-Map for White Pieces
0000010000000000001010000000001000000100 
1234567890123456789012345678901234567890 

1 2 3 4

NOT (Bit-Map for White Pieces)
1111101111111111110101111111110111111011 
1234567890123456789012345678901234567890 

1 2 3 4

AND(Knight moves , Not (White Pieces))
0001000000100010000000000010000000010000 
1234567890123456789012345678901234567890 

1 2 3 4

A B C D E F G H

8

7

6

5

4

3

2

1

Computer Chess © 1985‐2015, D Barnette

Evaluation Function
Numerical value assigned to a given position
Programs next move decision is based entirely on Fn
Tradeoff:

Complex Fn more computing time less search time
Simple Fn less computing time more search time

Material Evaluation
Values: Pawn Knight Bishop Rook Queen King

100 300 300 500 900 

//all computation performed with integer operations
FUNCTION Chess (P , N , B , R , Q) : INTEGER ;

Chess = P * 100 + N * 300 + B * 300 + R * 500 + Q * 900
where:

P = # of m/c’s pawns - # of opponent‘s pawns
N = # of m/c’s knights - # of opponent‘s knights

Computer Chess © 1985‐2015, D Barnette

Evaluation Function
Positional Factors

(game heuristics)

Mobility
bonus for each square
attacked by a piece

Pawn Structure
bonus for passed pawns, central pawns
penalty for doubled pawns, isolated pawns

Attacks
bonus for attacks against opponent‘s pieces

Castling
bonus for completion

Development
penalty for unmoved pieces

Doubled pieces
bonus for pieces attacking/defending same square

King Safety
penalty for enemy attacks
bonus for pieces near King (piece tropism)

A B C D E F G H

8

7

6

5

4

3

2

1

Position Score = 0

Symmetrical
Positions = 0

Computer Chess © 1985‐2015, D Barnette

Game Tree
Tree for previously scored position

P0

P1 P2 P3 P4

P11 P21 P22 P41

Rc8+ Qf7+ Rc7 Qc1

Rc8 Qxf7 Kxf7 Qb2

S11 = -500 S21 = S22 = -900 S41 = 0

loss
of

King

.

Computer Chess © 1985‐2015, D Barnette

Game Tree

Can a computer play the perfect game of chess?

Can the entire game tree be formed & searched?

Chess 50 move Rule:
If 50 moves occur without a capture or pawn move the

game is a draw.

[IJ Good 1969] (Va Tech Emeritus University Distinguished Professor)

• Maximum length of a game is 3150 moves.
• Maximum number of possible moves in a game = 320
• Theoretical maximum number of possible chess games =

3206300  1015790

Computer Chess © 1985‐2015, D Barnette

Game Tree Size

Average middle game position:
• Approximately 30 legal moves
• Tree of depth 4 (2 moves)

• 106 leaves (positions)
• 104 positions for move

Assume
• Scoring = 10 secs & move generation = 1sec
• A move for tree of depth 4 would take 40 secs
• A tree of 6 ply (3 moves) would take 11 hours

Computer Chess © 1985‐2015, D Barnette

Game Tree Size
Tree Size Control Methods: Width

• Width Control: number of moves considered per position
• Fanout Parameters

• Limits the number of moves considered at each level.
• Decreased with depth 0 [25,30] . . . depth 10 [5,10]

• Plausibility Ordering (iterative deepening)
plausibility score: heuristic value that determines the

worth of a move being searched.
• assigns a plausibility score to each generated move
• moves ordered by the plausibility score for application of the depth

fanout parameters

Computer Chess © 1985‐2015, D Barnette

Game Tree Size
Tree Size Control Methods: Depth

• Depth Control: number of moves a line (tree path) is searched
• Fixed Depth → Horizon Effect Problem

• Key move is missed at the next immediate depth.
• Example: previous position & 2-ply tree program would choose the

highest score = S41 (Qc1) missing the 2 move mate.

• Quiescence
• Position must be static (quiescentno captures, checks, ) before

analysis can be stopped & score function applied.
• Depth Cutoff Lists

• Lists containing positional features to determine quiescence.
• Number of features decreases with depth.
• When applied to a position if no feature is found position is

considered static, otherwise it is explored further.

Computer Chess © 1985‐2015, D Barnette

Game Theory: Min Max Method
Technique of selecting the best move in a tree

Assumes best play by opponent

• High score is best possible move (position) for program.
• Low score is best possible move for opponent.

Evaluation Fn is applied to static (quiescent) positions

• Minimum or Maximum (depending upon
player’s/opponent’s move) of scores for lower level nodes
are selected assigned to the higher level nodes.

• Process repeats until root (current position) is reached.
• The move that is selected is the one that leads to the

backed-up value for the root.

Computer Chess © 1985‐2015, D Barnette

Game Theory: Min Max Method

S1 = Min (S11 , S12 , S13) = S13 = -10 = M13

S2 = Min (S21 , S22 , S23) = S21 = 10 = M21

S0 = Max (S1 , S1) = S2 = 10 = M2

Thus M2 is the selected move.

P0

P1 P2

P11 P12 P13

M1 M2

P21 P22 P23

M11 M12 M13 M21 M22 M23

S11 S12 S13 S21 S22 S23
10 50 -10 10 50 100

Computer Chess © 1985‐2015, D Barnette

Alpha-Beta Algorithm
Tree pruning method

• Tree growth
control

• Eliminates useless evaluation
and searching of positions

• Based upon Move Refutation strategy

After a move has been searched & scored (tree path),
when other moves are searched if they lead to positions
that allow the opponent to force a lower score then the
program need not explore the moves.

Alpha-cutoff

Computer Chess © 1985‐2015, D Barnette

S1 = Min (S11 , S12 , S13 , ) = 27
S21 = 22
Since S21 < S1 positions P22 , P23 need not be evaluated.

Reasoning:
IF S22 , S23 , > S21 THEN opponent would not choose them (min)
IF S22 , S23 , < S21 THEN S2 < S1 & m/c will not choose M2 (max)

Alpha-Beta Algorithm
Tree pruning method

Alpha-cutoff

Computer Chess © 1985‐2015, D Barnette

Alpha-Beta Algorithm
Tree pruning method

Alpha highest score currently achieved for the machine
Beta highest score (negative) currently achieved for the opponent

Alpha Cutoffs
• Occur at odd depths when opponent’s move could reduce

program’s score

Beta Cutoffs
• Occur at even depths when program could reduce the “best”

score achieved for the opponent

 pruning reduces the search time by 80%
→ 15 minute move is reduced to a 3 minute move.

 pruning combined with iterative deepening (plausibility scoring)
achieves a total reduction of 90%

→ 30 minute move is reduced to a 3 minute move.

Computer Chess © 1985‐2015, D Barnette

Alpha-Beta Cutoffs

24

8

20

18

16

20

10

-4

8

16

16

20

8

21

11

-5

32

27

10

3

alpha cutoff

beta cutoff

YouTube: Computer Chess
• The History of Chess Computers
• Alan Turing ‐ The first ever Chess program

• Chess Computer Science ‐ Artifical Intelligence Paper: How
do Chess Engines work?

• Nova: Kasparov versus Deep Thought
• Part 1
• Part 2
• Part 3
• Part 4

• Deep Blue beat G. Kasparov in 1997

• Chess Programming on the Web
• chessprogramming.wikispaces.com

