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Graphs 

A graph G consists of a set V of vertices and a set E of pairs of distinct vertices from V.  

These pairs of vertices are called edges.

If the pairs of vertices are unordered, G is an undirected graph.  If the pairs of vertices are 

ordered, G is a directed graph or digraph.

A tree is 

a graph.

An undirected graph. A directed graph.
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Undirected Graph Terminology 

V = {a, b, c, d, e, f, g, h, i}
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An undirected graph G, where:

E = { {a, b}, {a, c}, {b, e}, {b, h}, {b, i} , 

{c, d} , {c, e} , {e, f} , {e, g} , {h, i} }

e = {c, d} is an edge, incident upon the 

vertices c and d

Two vertices, x and y, are adjacent if {x, y} is an edge (in E).

A path in G is a sequence of distinct vertices, each adjacent to the next.

A path is simple if no vertex occurs twice in the path.

A cycle in G is a path in G, containing at least three vertices, such that the last vertex in 

the sequence is adjacent to the first vertex in the sequence.
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Undirected Graph Terminology 
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A graph G is connected if, given any two 

vertices x and y in G, there is a path in G 

with first vertex x and last vertex y.

The graph on the previous slide is 

connected.

If a graph G is not connected, then we say 

that a maximal connected set of vertices is a 

component of G. 
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Directed Graph Terminology 

The terminology for directed graphs is 

only slightly different…

e = (c, d) is an edge, from c to d

A directed path in a directed graph G is a 

sequence of distinct vertices, such that 

there is an edge from each vertex in the 

sequence to the next.

A directed graph G is weakly connected if, the undirected graph obtained by suppressing 

the directions on the edges of G is connected (according to the previous definition).

g

e

a

b

c

d

f

h

i

g

A directed graph G is strongly connected if, given any two vertices x and y in G, there is a 

directed path in G from x to y.
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Adjacency Matrix Representation 

A graph may be represented by a two-

dimensional adjacency matrix:
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If G has n = |V| vertices, let M be an 

n by n matrix whose entries are 

defined by
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Adjacency Matrix Representation 
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The adjacency table:

- Θ(1) to determine existence of a specific edge

- Θ( |V|2 ) storage cost (cut cost by 75% or more by changing types)

- Θ( |V| ) for finding all vertices accessible from a specific vertex

- Θ(1) to add or delete an edge

- Not easy to add or delete a vertex; better for static graph structure.

- Symmetric matrix for undirected graph; so half is redundant then.
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Adjacency Table Representation 

A slightly different approach is to represent 

only the adjacent nodes in the structure:
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0 |  1  2

1 |  4  7  8

2 |  0  3  4

3 |  

4 |  1  6

5 |  4

6 |  

7 |  1  8

8 |  
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Adjacency List Representation 

The adjacency list structure is simply a 

linked version of the adjacency table:
0
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5 1 4 ••••

1 5 ••••

2 ••••

0 3 ••••

0 5 ••••4

1 2 ••••

Array of linked lists, where list nodes store node labels for neighbors.
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Adjacency List Representation 
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5 1 4 ••••

1 5 ••••

2 ••••

0 3 ••••

0 5 ••••4

1 2 ••••

The adjacency list structure:

- Worst case:  Θ( |V| ) to determine existence of a specific edge

- Θ( |V| + |E| ) storage cost

- Worst case:  Θ( |V| ) for finding all neighbors of a specific vertex

- Worst case:  Θ( |V| ) to add or delete an edge

- Still not easy to add or delete a vertex; however, we can use a linked list in 

place of the array.

Note, for an undirected 

graph, the upper bound on 

the number of edges is:

|E| ≤≤≤≤ |V|*(|V|-1)

So, the space comparison 

with the adjacency matrix 

scheme is not trivial.
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An Adjacency Matrix Class

public class AdjMatrix {

private int numVertices;
private boolean[] Marker;  // used for vertex marking
private int[][] Edge;      // Edge[i][j] == 1 iff (i,j) exists

public AdjMatrix(int numV) {...}

public boolean addEdge(int Src, int Trm) {...}
public boolean delEdge(int Src, int Trm) {...}
public boolean hasEdge(int Src, int Trm) {...}

public int firstNeighbor(int Src) {...}
public int nextNeighbor(int Src, int Prev) {...}

public boolean isMarked(int V) {...}
public boolean Mark(int V) {...}
public boolean unMark(int V) {...}

public void Clear() {...}    // erase edges and vertex marks
public void Display() {...}

}

firstNeighbor() returns 

the first vertex adjacent to 
Src.

nextNeighbor() returns 

the next vertex, after Prev, 

which is adjacent to Src.


