
Graph Structures

Data Structures & Algorithms

1

CS@VT ©2000-2009 McQuain

Graphs

A graph G consists of a set V of vertices and a set E of pairs of distinct vertices from V.

These pairs of vertices are called edges.

If the pairs of vertices are unordered, G is an undirected graph. If the pairs of vertices are

ordered, G is a directed graph or digraph.

A tree is

a graph.

An undirected graph. A directed graph.

Graph Structures

Data Structures & Algorithms

2

CS@VT ©2000-2009 McQuain

Undirected Graph Terminology

V = {a, b, c, d, e, f, g, h, i}

a

i

g

f

e

d

c

b

h

An undirected graph G, where:

E = { {a, b}, {a, c}, {b, e}, {b, h}, {b, i} ,

{c, d} , {c, e} , {e, f} , {e, g} , {h, i} }

e = {c, d} is an edge, incident upon the

vertices c and d

Two vertices, x and y, are adjacent if {x, y} is an edge (in E).

A path in G is a sequence of distinct vertices, each adjacent to the next.

A path is simple if no vertex occurs twice in the path.

A cycle in G is a path in G, containing at least three vertices, such that the last vertex in

the sequence is adjacent to the first vertex in the sequence.

Graph Structures

Data Structures & Algorithms

3

CS@VT ©2000-2009 McQuain

Undirected Graph Terminology

i

g

f

e

a

d

c

b

h

A graph G is connected if, given any two

vertices x and y in G, there is a path in G

with first vertex x and last vertex y.

The graph on the previous slide is

connected.

If a graph G is not connected, then we say

that a maximal connected set of vertices is a

component of G.

Graph Structures

Data Structures & Algorithms

4

CS@VT ©2000-2009 McQuain

Directed Graph Terminology

The terminology for directed graphs is

only slightly different…

e = (c, d) is an edge, from c to d

A directed path in a directed graph G is a

sequence of distinct vertices, such that

there is an edge from each vertex in the

sequence to the next.

A directed graph G is weakly connected if, the undirected graph obtained by suppressing

the directions on the edges of G is connected (according to the previous definition).

g

e

a

b

c

d

f

h

i

g

A directed graph G is strongly connected if, given any two vertices x and y in G, there is a

directed path in G from x to y.

Graph Structures

Data Structures & Algorithms

5

CS@VT ©2000-2009 McQuain

Adjacency Matrix Representation

A graph may be represented by a two-

dimensional adjacency matrix:

4

0
1

2

3

5

7

8

6

If G has n = |V| vertices, let M be an

n by n matrix whose entries are

defined by

=
otherwise0

edgean is j) (i, if1
ijm

=

000000000

000000010

000000000

000010000

001000010

000000000

000011001

110010000

000000110

)(GM

Graph Structures

Data Structures & Algorithms

6

CS@VT ©2000-2009 McQuain

Adjacency Matrix Representation

=

000000000

000000010

000000000

000010000

001000010

000000000

000011001

110010000

000000110

)(GM

The adjacency table:

- Θ(1) to determine existence of a specific edge

- Θ(|V|2) storage cost (cut cost by 75% or more by changing types)

- Θ(|V|) for finding all vertices accessible from a specific vertex

- Θ(1) to add or delete an edge

- Not easy to add or delete a vertex; better for static graph structure.

- Symmetric matrix for undirected graph; so half is redundant then.

Graph Structures

Data Structures & Algorithms

7

CS@VT ©2000-2009 McQuain

Adjacency Table Representation

A slightly different approach is to represent

only the adjacent nodes in the structure:

4

0
1

2

3

5

7

8

6

0 | 1 2

1 | 4 7 8

2 | 0 3 4

3 |

4 | 1 6

5 | 4

6 |

7 | 1 8

8 |

Graph Structures

Data Structures & Algorithms

8

CS@VT ©2000-2009 McQuain

Adjacency List Representation

The adjacency list structure is simply a

linked version of the adjacency table:
0

3

2

1

4

5
0

1

2

3

4

5 1 4 ••••

1 5 ••••

2 ••••

0 3 ••••

0 5 ••••4

1 2 ••••

Array of linked lists, where list nodes store node labels for neighbors.

Graph Structures

Data Structures & Algorithms

9

CS@VT ©2000-2009 McQuain

Adjacency List Representation

0

1

2

3

4

5 1 4 ••••

1 5 ••••

2 ••••

0 3 ••••

0 5 ••••4

1 2 ••••

The adjacency list structure:

- Worst case: Θ(|V|) to determine existence of a specific edge

- Θ(|V| + |E|) storage cost

- Worst case: Θ(|V|) for finding all neighbors of a specific vertex

- Worst case: Θ(|V|) to add or delete an edge

- Still not easy to add or delete a vertex; however, we can use a linked list in

place of the array.

Note, for an undirected

graph, the upper bound on

the number of edges is:

|E| ≤≤≤≤ |V|*(|V|-1)

So, the space comparison

with the adjacency matrix

scheme is not trivial.

Graph Structures

Data Structures & Algorithms

10

CS@VT ©2000-2009 McQuain

An Adjacency Matrix Class

public class AdjMatrix {

private int numVertices;
private boolean[] Marker; // used for vertex marking
private int[][] Edge; // Edge[i][j] == 1 iff (i,j) exists

public AdjMatrix(int numV) {...}

public boolean addEdge(int Src, int Trm) {...}
public boolean delEdge(int Src, int Trm) {...}
public boolean hasEdge(int Src, int Trm) {...}

public int firstNeighbor(int Src) {...}
public int nextNeighbor(int Src, int Prev) {...}

public boolean isMarked(int V) {...}
public boolean Mark(int V) {...}
public boolean unMark(int V) {...}

public void Clear() {...} // erase edges and vertex marks
public void Display() {...}

}

firstNeighbor() returns

the first vertex adjacent to
Src.

nextNeighbor() returns

the next vertex, after Prev,

which is adjacent to Src.

