
External Sorting

Data Structures & Algorithms

1

CS@VT ©2000-2009 McQuain

Sorting a File of Records

Consider the problem of sorting a large file, stored on disk, containing a large number of

logical records.

If the file is very large at all then it will be impossible to load all of the records into

memory at once, and so the conventional in-memory sorting techniques will not work.

Obviously, some subset of the records must be in memory during the sort, and each

record must be loaded into memory at some time.

However, at any given time, most of the records will exist only in secondary storage.

Aside from correctness, the principal goal of external sorting is to minimize the amount

of time spent on disk accesses.

External Sorting

Data Structures & Algorithms

2

CS@VT ©2000-2009 McQuain

Keys vs Records

"Keys are small but records are large."

E.g., consider sorting a file of book records by ISBN. A book record may contain a

dozen or more fields, and occupy several hundred bytes. An ISBN will occupy at most

13 bytes.

Clearly we can store more key values in memory than we can store entire records.

So we could read a portion of the file, and build an in-memory list of key values, which

could then be sorted using one of the techniques already discussed, such as Quicksort.

Of course, we must also store an address (file offset) along with the key value in order to

locate the record.

The sorted list of keys could be used as an index for the unsorted records, or the records

could be read and re-written in sorted order.

Note that it will often be impossible to store all of the keys in memory at once…

External Sorting

Data Structures & Algorithms

3

CS@VT ©2000-2009 McQuain

Simple Mergesort

We could sort a file of records as follows:

1 Partition the file into two files, say F1 and F2.

2 Read in a block from each file.

3 Take the first record from each block and write them in sorted order (to a new file,

say M1).

4 Repeat the process with the record from each block, but write to a second file, say

M2.

5 Repeat until F1 and F2 have been depleted, reading in new blocks as necessary.

M1 and M2 consist of ordered pairs of records.

6 Repeat steps 2-5, but merge pairs of records instead of single records, producing

sorted runs of length four.

7 Continue, building longer and longer runs.

External Sorting

Data Structures & Algorithms

4

CS@VT ©2000-2009 McQuain

Illustration

36 17 29 23 32 9 41 6

20 13 14 15 8 37 5 22F1

F2

13 17 15 23 9 37 6 22

20 36 14 29 8 32 5 41M1

M2

14 15 23 29 5 6 22 41

13 17 20 36 8 9 32 37F1

F2

Assuming one block

holds 4 records, what

would be resident in

memory at each stage?

External Sorting

Data Structures & Algorithms

5

CS@VT ©2000-2009 McQuain

Illustration

5 6 8 9 22 32 37 41

13 14 15 17 20 23 29 36M1

M2

14 15 23 29 5 6 22 41

13 17 20 36 8 9 32 37F1

F2

5 6 8 9 13 14 15 17 20 22 23 29 32 36 37 41

How many times is the

entire file read here?

External Sorting

Data Structures & Algorithms

6

CS@VT ©2000-2009 McQuain

Reducing the Number of Passes

We can improve performance if we reduce the number of passes. The inefficiency lies in

the early stages, as run lengths grow from 1 to 2 to 4 to 8 to …

The problem is: how can we efficiently build long runs to which we may efficiently

apply the merging algorithm?

One solution: read as much of the file as possible into memory at once, then sort that and

write it to a new file. Repeat the process until the entire file has been read. This will

build runs whose length corresponds to the amount of memory we can allot to hold

records.

Surprisingly it's possible to do substantially better than that, producing initial runs that

are roughly twice as long as memory will store at once…

External Sorting

Data Structures & Algorithms

7

CS@VT ©2000-2009 McQuain

Replacement Selection

Allocate a portion of memory for a min-heap, an input buffer and an output buffer:

Input

File

Output

File

Heap

B
u
ffe
r B

u
ff
e
r

Fill the heap, heapify, and delete the root to the output buffer. If the next key in the input

buffer is larger than the old root, make it the new root, else…

External Sorting

Data Structures & Algorithms

8

CS@VT ©2000-2009 McQuain

Illustration

31

12

19

2125 56 40

$ 14 29 16

3119

2125 56 40

Input

Buffer

Output

Buffer

12

31

16

19

2125 56 40

Heap

16 can

go into

this run,

so 16 goes

into the root

position,

and 16 doesn't

even need to

sift down

External Sorting

Data Structures & Algorithms

9

CS@VT ©2000-2009 McQuain

Illustration

31

16

19

2125 56 40

12$ 35 14 29

3119

2125 56 40

16 12

31

19

21

2925 56 40

The value 29 sifts down after

it's placed into the heap:

External Sorting

Data Structures & Algorithms

10

CS@VT ©2000-2009 McQuain

Illustration

31

19

21

2925 56 40

16 12$ 35 14

19 16 12

3121

2925 56 40

40

31

21

2925 56 14

14

can't

go into

this

run,
so we replace

the root with

the value in

the last leaf,

and 14 goes into the

space formerly

occupied by that leaf,

and 40

sifts

down.

External Sorting

Data Structures & Algorithms

11

CS@VT ©2000-2009 McQuain

Illustration

… and so forth … when the heap becomes empty, we just flush the buffer out to the file,

heapify the array (which is where?) and begin a new run…

… if we shrink the heap 50% of the time, we'll build a run that's got twice the number of

elements the heap can hold.

$ 35 19 16 12

40

31

21

2925 56 14

