CS3114 Fall 2012 Homework Assignment 3 Sample Solutions

1. Suppose that a record is 32 bytes, a block is 1024 bytes (thus, there are 32 records per block), and that working memory is 1 MB (there is also additional space available for I / O buffers, program variables, etc.). What is the expected size for the largest file that can be merged using replacement selection followed by a single pass of multiway merge? Explain how you got your answer.

Since working memory is 1 MB and the block size is 1 KB , the number of blocks in working memory is 1024 . The expected runlength is 2 MB , since replacement selection will, on average, produce runs that are twice the memory size. 1024 runs can be merged in a single multiway merge operation. Thus, the largest expected file size for a single pass of multiway merge is 2 Gigabytes.
2. A typical disk drive from 2004 has the following specifications. The total storage is approximately 120GB on 6 platter surfaces or $20 \mathrm{~GB} /$ platter. Each platter has 16 K tracks with 2560 sectors/track (a sector holds 512 bytes) and 8 sectors/cluster. The disk turns at 7200 rpm . The track-to-track seek time is 2.0 ms , and the average seek time is 10.0 ms . Calculate the time required to read a 16 MB file assuming
(a) The file is stored on a series of contiguous tracks, as few tracks as possible.

One track holds 1280 K bytes, so the file requires 12.8 tracks, whose read time will be nearly identical to 13 full tracks. Seek time to the first track is 10 ms . Latency and read time together require $1.5 * 8.33 \mathrm{~ms}$. Thus, the time to read the first track is $10+1.5 * 8.33 \approx 22.5$ ms . The time to read each of the next 12 tracks is $2+1.5 * 8.33 \approx 14.5 \mathrm{~ms}$. Thus, the total time required is $22.5+12 * 14.5=196.5 \mathrm{~ms}$.
(b) The file is spread randomly across the disk in 4 KB clusters.

16 MB at 4 KB per cluster is 4096 clusters, each requiring an independent seek and rotational delay. The time to do the actual read after rotational delay is only $8 / 2560$ of a read, so we can safely ignore that. Thus, the total time required is $4096 *(10+0.5 * 8.33) \approx 58.03$ seconds.
3. B^{+}-tree Questions
(a) Show the result of inserting the values $1,2,3,4,5$, and 6 (in that order) into the B^{+}-tree of Figure 10.18 in the textbook.

(b) Show the result of deleting first the value 31 and then the value 52 from the B^{+}-tree of Figure 10.18 in the textbook.

I will accept either of the following (though the first one is what should really happen).

4. Show the shortest paths generated by running Dijkstra's shortest-paths algorithm on the graph of Figure 11.26, beginning at Vertex 5. Show the D values as each vertex is processed, as in Figure 11.19.

Vertex	1	2	3	4	5	6
Initial	∞	∞	∞	∞	0	∞
Process 5	∞	∞	15	11	0	3
Process 6	5	∞	15	11	0	3
Process 1	5	15	15	11	0	3
Process 4	5	15	15	11	0	3
Process 3	5	15	15	11	0	3
Process 2	5	15	15	11	0	3

5. Write an algorithm to determine whether a directed graph of $|V|$ vertices contains a cycle. Your algorithm should run in $\Theta(|V|+|E|)$ time.

To solve this problem, simply run the BFS topological sort algorithm. If there are any cycles, then some vertices will remain in the queue.

