
CS3114 Fall 2012 Homework Assignment 1
Sample Solutions

1. Here are some questions that test your working knowledge of how fast
computers operate. Is disk drive access time normally measured in millisec-
onds (thousandths of a second) or microseconds (millionths of a second)?
Does your RAM memory access a word in more or less than one microsec-
ond? How many instructions can your CPU execute in one year if the
machine is left running at full speed all the time? DO NOT use paper or a
calculator to derive your answers.

Disk drive seek time is somewhere around 10 milliseconds or a little
less. RAM memory requires around 10 nanoseconds – much less than a
microsecond. Given that there are about 30 million seconds in a year, a
machine capable of executing at one billion instructions per second would
execute about 30 million billion (3 ∗ 1016) instructions in a year.

2. For each of the following pairs of functions, determine whether f(n) is
in O(g(n)), g(n) is in O(f(n)), or f(n) is Θ(g(n)). (Read Section 3.4.5 of
the book for help.)

(i) f(n) =
√
n, g(n) = log(n2).

f(n) is in Ω(g(n)). Since nc1 grows faster than log nc2 for any constants
c1 and c2, the ratio of

√
n to log n2 approaches infinity as n approaches

infinity.

(ii) f(n) = log(n2), g(n) = logn.

f(n) is in Θ(g(n)). Since log(n2) = 2 log n, the limit goes to 1/2 (a
constant).

1



(iii) f(n) = 2n, g(n) = 10n2.

If we take the log of both sides, we can easily see that the limit of
log f(n)/ log g(n) goes to infinity. Thus, f(n) is in Ω(g(n)).

(iv) f(n) = 2n, g(n) = 3n.

f(n) is in O(g(n)). 3n = 1.5n2n, and if we divide both sides by 2n, we
see that 1.5n grows faster than 1.

3. Give the best lower bound that you can for the following code fragment,
as a function of the initial value of n.

while (n > 1)

if (ODD(n))

n = 3 * n + 1;

else

n = n / 2;

Do you think that the upper bound is likely to be the same as the answer
you gave for the lower bound?

The best lower bound I know is Ω(log n), since a value cannot be reduced
more quickly than by repeated division by 2. There is no known upper
bound, since it is unknown if this algorithm always terminates. But many
values have costs that are much greater than log n. So it looks like the upper
bound is greater than the lower bound.

2



4. A typical array-based list implementation stores references to the list
data elements. A typical linked list implementation stores in each link node
a reference to the data element and a reference to the next link node. De-
termine the size of a pointer on your machine. Use this and the equation
from Section 4.1.3 of the textbook to determine the breakeven point beyond
which the array becomes more space efficient than the linked list.

Answer 1: The following holds whether you assume that your pointers
are 4 bytes (32-bit machine) or 8 bytes (64-bit machine). The linked list
stores 2 pointers/link node plus the data field for each of n nodes, while the
array stores 1 pointer in every one of the D array slots plus the data field
for the n slots with data. We can ignore the space for the data since this is
the same for both representations. Thus, the break-even point comes when
P ∗D = 2P ∗ n, or when n = D/2. The array becomes more space efficient
whenever it is more than half full.

5. A palindrome is a string that reads the same forwards as backwards.
Using only a fixed number of stacks and queues, the stack and queue ADT
functions, and a fixed number of int and char variables, write an algorithm
to determine if a string is a palindrome. Assume that the string is read
from an input stream one character at a time. The algorithm should output
TRUE or FALSE as appropriate.

bool palin() {

Stack<char> S;

Queue<char> Q;

while ((c = getc()) != ENDOFSTRING) {

S.push(c);

Q.enqueue(c);

}

while (!S.isEmpty()) {

if (S.top() != Q.front()) return FALSE;

char dum = S.pop();

dum = Q.dequeue();

}

return TRUE;

}

3


