
Graph Traversals

Data Structures & Algorithms

1

CS@VT ©2000-2009 McQuain

Graph Traversals

0

8

6

5

4

3
2

1

7

Some algorithms require that every vertex
of a graph be visited exactly once.

The order in which the vertices are visited
may be important, and may depend upon
the particular algorithm.

The two common traversals:

- depth-first

- breadth-first

During a traversal we must keep track of which vertices have been visited; the most
common approach is to provide some sort of “marking” support.

Graph Traversals

Data Structures & Algorithms

2

CS@VT ©2000-2009 McQuain

Graph Traversals: Depth-First

Assume a particular node has been designated as the starting point.

Let A be the last node visited and suppose A has neighbors N1, N2, …, Nk.

A depth-first traversal will:

- visit N1, then

- proceed to traverse all the unvisited neighbors of N1, then

- proceed to traverse the remaining neighbors of A in similar fashion.

N1

NkN2

A

neighbors (and extended

neighbors) of N1

1

10

8

9

7

6

5

4
3

2

Graph Traversals

Data Structures & Algorithms

3

CS@VT ©2000-2009 McQuain

Depth-First Traversal

0

8

6

5
4

3
2

1

7

If we pick node 0 as our starting point:

Visited = {0}Visited = {0, 1}

0
1

4

2

Visited = {0, 1, 2}Visited = {0, 1, 2, 3}

3

Visited = {0, 1, 2, 3, 4}

5

Visited = {0, 1, 2, 3, 4, 5}

6

Visited = {0, 1, 2, 3, 4, 5, 6}

7

Visited = {0, 1, 2, 3, 4, 5, 6, 7}

8

Visited = {0, 1, 2, 3, 4, 5, 6, 7, 8}

Graph Traversals

Data Structures & Algorithms

4

CS@VT ©2000-2009 McQuain

Graph Traversals: Depth-First

Assuming the node labeled 0 has been
designated as the starting point, a depth-
first traversal would visit the graph nodes
in the order:

0 1 2 3 4 5 6 7 8

Note that if the edges taken during the
depth-first traversal are marked, they
define a tree (not necessarily binary)
which includes all the nodes of the graph.

Such a tree is called a spanning tree for
the graph.

a

8

6

5

4

3
2

1

7

0

Graph Traversals

Data Structures & Algorithms

5

CS@VT ©2000-2009 McQuain

Implementing a Depth-First Traversal

If we modify DFS() to take another
AdjMatrix object as a parameter, it is
relatively trivial to have DFS() build a
copy of the spanning tree.

public static void DFS(AdjMatrix G, int Start) {

G.Mark(Start);
for (int w = G.firstNeighbor(Start);

G.hasEdge(Start, w); w = G.nextNeighbor(Start, w)) {

if (!G.isMarked(w)) {
DFS(G, w);

}
}

}

a

8

6

5

4

3
2

1

7

0

Graph Traversals

Data Structures & Algorithms

6

CS@VT ©2000-2009 McQuain

Graph Traversals: Breadth-First
Assume a particular node has been designated as the starting point.

Let A be the last node visited and suppose A has neighbors N1, N2, …, Nk.

A breadth-first traversal will:

- visit N1, then N2, and so forth through Nk, then

- proceed to traverse all the unvisited immediate neighbors of N1, then

- traverse the immediate neighbors of N2, … Nk in similar fashion.

N1

NkN2

A

neighbors of N1

10

7

65
4

3

2

1

9

8

Graph Traversals

Data Structures & Algorithms

7

CS@VT ©2000-2009 McQuain

Breadth-First Traversal
If we pick node 0 as our starting point:

6

0

85

4

3
2

1

7

0
1

2

3

4

5

6

7

8

0 1 2 4 7 8 3 5 6

Graph Traversals

Data Structures & Algorithms

8

CS@VT ©2000-2009 McQuain

Graph Traversals: Breadth-First

Assuming the node labeled a has been
designated as the starting point, a
breadth-first traversal would visit the
graph nodes in the order:

0 1 2 4 7 8 3 5 6

Note the edges taken during the breadth-
first traversal also define a spanning tree
for the given graph.

As is the case here, the breadth-first
spanning tree is usually different from the
depth-first spanning tree.

0

8

6

5

4

3
2

1

7

Graph Traversals

Data Structures & Algorithms

9

CS@VT ©2000-2009 McQuain

Implementing a Breadth-First Traversal

void BFS(AdjacencyMatrix& G, int Source) {

queue<int> toVisit; // schedule nodes here
toVisit.Enqueue(Source);
G.Mark(Source);

while (!toVisit.isEmpty()) {
int VisitNow = toVisit.Dequeue();

for (int w = G.firstNeighbor(VisitNow);
G.isEdge(VisitNow, w); w = G.nextNeighbor(VisitNow, w)) {

if (!G.isMarked(w)) {
toVisit.Enqueue(w);
G.Mark(w);

}
}

}
}

The breadth-first traversal uses a local
queue to organize the graph nodes into
the proper order:

The for loop schedules all
the unvisited neighbors of
the current node for future
visits.

0

8

6

5
4

3
2

1

7

