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Graph Traversals
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Some algorithms require that every vertex 
of a graph be visited exactly once.

The order in which the vertices are visited 
may be important, and may depend upon 
the particular algorithm.

The two common traversals:

- depth-first

- breadth-first

During a traversal we must keep track of which vertices have been visited; the most 
common approach is to provide some sort of “marking” support.
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Graph Traversals: Depth-First 

Assume a particular node has been designated as the starting point.

Let A be the last node visited and suppose A has neighbors N1, N2, …, Nk.

A depth-first traversal will:

- visit N1, then 

- proceed to traverse all the unvisited neighbors of N1, then

- proceed to traverse the remaining neighbors of A in similar fashion.
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Depth-First Traversal
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If we pick node 0 as our starting point:

Visited = {0}Visited = {0, 1}
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Visited = {0, 1, 2}Visited = {0, 1, 2, 3}
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Visited = {0, 1, 2, 3, 4}
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Visited = {0, 1, 2, 3, 4, 5}
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Visited = {0, 1, 2, 3, 4, 5, 6}
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Visited = {0, 1, 2, 3, 4, 5, 6, 7}
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Visited = {0, 1, 2, 3, 4, 5, 6, 7, 8}
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Graph Traversals: Depth-First 

Assuming the node labeled 0 has been 
designated as the starting point, a depth-
first traversal would visit the graph nodes 
in the order:

0  1  2  3  4  5  6  7  8

Note that if the edges taken during the 
depth-first traversal are marked, they 
define a tree (not necessarily binary) 
which includes all the nodes of the graph.

Such a tree is called a spanning tree for 
the graph.
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Implementing a Depth-First Traversal

If we modify DFS() to take another 
AdjMatrix object as a parameter, it is 
relatively trivial to have DFS() build a 
copy of the spanning tree.

public static void DFS(AdjMatrix G, int Start) {

G.Mark(Start);
for (int w = G.firstNeighbor(Start); 

G.hasEdge(Start, w); w = G.nextNeighbor(Start, w) ) {

if ( !G.isMarked(w) ) { 
DFS(G, w);

}
}

}
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Graph Traversals: Breadth-First 
Assume a particular node has been designated as the starting point.

Let A be the last node visited and suppose A has neighbors N1, N2, …, Nk.

A breadth-first traversal will:

- visit N1, then N2, and so forth through Nk, then

- proceed to traverse all the unvisited immediate neighbors of N1, then

- traverse the immediate neighbors of N2, … Nk in similar fashion.
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Breadth-First Traversal
If we pick node 0 as our starting point:
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Graph Traversals: Breadth-First 

Assuming the node labeled a has been 
designated as the starting point, a 
breadth-first traversal would visit the 
graph nodes in the order:

0  1  2  4  7  8  3  5  6

Note the edges taken during the breadth-
first traversal also define a spanning tree 
for the given graph.

As is the case here, the breadth-first 
spanning tree is usually different from the 
depth-first spanning tree.
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Implementing a Breadth-First Traversal

void BFS(AdjacencyMatrix& G, int Source) {

queue<int> toVisit; // schedule nodes here
toVisit.Enqueue(Source);
G.Mark(Source);

while ( !toVisit.isEmpty() ) {
int VisitNow = toVisit.Dequeue();

for (int w = G.firstNeighbor(VisitNow); 
G.isEdge(VisitNow, w); w = G.nextNeighbor(VisitNow, w) ) {

if ( !G.isMarked(w) ) {
toVisit.Enqueue(w);
G.Mark(w);

}
}

}
}

The breadth-first traversal uses a local 
queue to organize the graph nodes into 
the proper order:

The for loop schedules all 
the unvisited neighbors of 
the current node for future 
visits.
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