B Graphs Graph Structures 1

A graph G consists of a set V of vertices and a set E of pairs of distinct vertices from V.
These pairs of vertices are called edges.

If the pairs of vertices are unordered, G is an undirected graph. If the pairs of vertices are
ordered, G is a directed graph or digraph.

J<} @ ?
A treeis C>/7 O
a graph. O

An undirected graph. A directed graph.

CS@VT Data Structures & Algorithms ©2000-2009 McQuain

W Undirected Graph Terminology Graph Structures 2

An undirected graph G, where:

V={a,b,c,defqg,h,i}

E={{a b}, {a c} {b, e} {b, h} {b, i},
{c,d} {c,e}.{e.f} . {e g}, {h,i}}

e ={c,d} is an edge, incident upon the
vertices c and d

Two vertices, x and y, are adjacent if {x, y} is an edge (in E).

A path in G is a sequence of distinct vertices, each adjacent to the next.

A path is simple if no vertex occurs twice in the path.

A cycle in Gis a path in G, containing at least three vertices, such that the last vertex in
the sequence is adjacent to the first vertex in the sequence.

CS@VT Data Structures & Algorithms ©2000-2009 McQuain

I Undirected Graph Terminology Graph Structures 3

A graph G is connected if, given any two
vertices x and y in G, there is a path in G
with first vertex x and last vertex y.

The graph on the previous slide is
connected.

If a graph G is not connected, then we say
that a maximal connected set of vertices is a
component of G.

CS@VT Data Structures & Algorithms ©2000-2009 McQuain

I Directed Graph Terminology Graph Structures 4

The terminology for directed graphs is a
only slightly different. .. (b)

e=(c,d) isanedge,fromctod °

A directed path in a directed graph G is a

sequence of distinct vertices, such that @/ E
there is an edge from each vertex in the @

sequence to the next.

A directed graph G is weakly connected if, the undirected graph obtained by suppressing
the directions on the edges of G is connected (according to the previous definition).

A directed graph G is strongly connected if, given any two vertices x and y in G, there is a
directed path in G from x to y.

CS@VT Data Structures & Algorithms ©2000-2009 McQuain

W Adjacency Matrix Representation Graph Structures 5

A graph may be represented by a two- (0)
dimensional adjacency matrix: (1)

If G has n = V| vertices, let M be an (2)
n by n matrix whose entries are
defined by

@i@

1 if (1,) i1sanedge
0 otherwise i i

M(G) =

O O O O oo o+ o o
O r O O Fr O O O k-
O O O O O O O O Bk
O O O O o o O O
o O o b OO+, B+, O
O O O O O o o o o
O O O O r OO o o
O O O O O O O +—» O
O O O O O o o+ O

CS@VT Data Structures & Algorithms ©2000-2009 McQuain

W Adjacency Matrix Representation Graph Structures 6

The adjacency table:
- ©O(1) to determine existence of a specific edge
- O(|V|?) storage cost (cut cost by 75% or more by changing types)
- O(|V|) for finding all vertices accessible from a specific vertex
- ©(1) to add or delete an edge
- Not easy to add or delete a vertex; better for static graph structure.

- Symmetric matrix for undirected graph; so half is redundant then.

0N\l 1 000O0O0O
0 0N\OO100T1:71
100\ 10000
000O0NO0GOTO O

M(G)=[0 1 0 0 ONO 1 0 O
000O01O0N0O00O
0000O0GO0ON0 O
0100000 O\O
0 000O00O0GO0 0 O

CS@VT Data Structures & Algorithms ©2000-2009 McQuain

I Adjacency Table Representation Graph Structures 7

A slightly different approach is to represent (0)
only the adjacent nodes in the structure: (1)
©
0 | 2
1 4 7 (@)
| o
2 | 3 4
3 | @
4 | 6
5| 4
6 |
7] 1 8
8 |

CS@VT Data Structures & Algorithms ©2000-2009 McQuain

I Adjacency List Representation Graph Structures 8

The adjacency list structure is simply a
linked version of the adjacency table:

0 > 1 > 2 |e

1 > 0 > 4 > 5
2 > 0 > 3 | e

3 > 2 °

4 > 1 > 5 | e

5 > 1 > 4 |e

J

Array of linked lists, where list nodes store node labels for neighbors.

CS@VT Data Structures & Algorithms ©2000-2009 McQuain

Adjacency List Representation Graph Structures 9

The adjacency list structure:
- Worst case: O(|V|) to determine existence of a specific edge
- O(|V| + |E|) storage cost
- Worst case: O(|V|) for finding all neighbors of a specific vertex
- Worst case: O(|V|) to add or delete an edge

- Still not easy to add or delete a vertex; however, we can use a linked list in
place of the array.

0 >] > 2 °

1 > 0 > 4 > 5 °
Note, for an undirected
graph, the upper bound on 2 > 0 > 3 o
the number of edges is:

> 2
E1 < IVIF(VI-D) - .

So, the space comparison 4 > 1 > 5 o
with the adjacency matrix
scheme is not trivial. 5 > 1 > 4 | e

CS@VT Data Structures & Algorithms ©2000-2009 McQuain

An Adjacency Matrix Class Graph Structures 10

public class AdjMatrix {
private int numVertices;
private boolean[] Marker; // used for vertex marking
private int[][] Edge; // Edge[i][})] == 1 1ff (i1,]) exists

public AdjMatrix(int numV) {...}

public boolean addEdge(int Src, t Trm) {...}
public boolean delEdge(int Src, t Trm) {.. 2}

public boolean hasEdge(int Src, int Trm) {..| firstNeighbor() returns
the first vertex adjacent to
Src.

n
n

public 1nt firstNeighbor(int Src) {...}
public int nextNeighbor(int Src, int Prev) {...}

public boolean isMarked(int V) {...} nextNeighbor() returns
public boolean Mark(int V) {...} e MO HETEY, BT PeY

- - which is adjacent to Src.
public boolean unMark(int V) {...}

public void Clear() {...} // erase edges and vertex marks
public void Display(Q) {---}

CS@VT Data Structures & Algorithms ©2000-2009 McQuain

