A graph G consists of a set V of vertices and a set E of pairs of distinct vertices from V . These pairs of vertices are called edges.
If the pairs of vertices are unordered, G is an undirected graph. If the pairs of vertices are ordered, G is a directed graph or digraph.

A tree is a graph.

An undirected graph.

A directed graph.

Undirected Graph Terminology

An undirected graph G, where:

$$
\begin{aligned}
& V=\{a, b, c, d, e, f, g, h, i\} \\
& E=\{\{a, b\},\{a, c\},\{b, e\},\{b, h\},\{b, i\}, \\
& \\
& \quad\{c, d\},\{c, e\},\{e, f\},\{e, g\},\{h, i\}\} \\
& e=\{c, d\} \quad \begin{array}{l}
\text { is an edge, incident upon the } \\
\\
\text { vertices } c \text { and } d
\end{array}
\end{aligned}
$$

Two vertices, x and y, are adjacent if $\{x, y\}$ is an edge (in E).

A path in \mathbf{G} is a sequence of distinct vertices, each adjacent to the next.
A path is simple if no vertex occurs twice in the path.

A cycle in \mathbf{G} is a path in \mathbf{G}, containing at least three vertices, such that the last vertex in the sequence is adjacent to the first vertex in the sequence.

Undirected Graph Terminology

A graph G is connected if, given any two vertices x and y in G, there is a path in G with first vertex x and last vertex y.

The graph on the previous slide is connected.

If a graph \mathbf{G} is not connected, then we say that a maximal connected set of vertices is a component of G.

Directed Graph Terminology

The terminology for directed graphs is only slightly different...
$e=(c, d)$ is an edge, from c to d

A directed path in a directed graph G is a sequence of distinct vertices, such that there is an edge from each vertex in the sequence to the next.

A directed graph G is weakly connected if, the undirected graph obtained by suppressing the directions on the edges of G is connected (according to the previous definition).

A directed graph G is strongly connected if, given any two vertices x and y in G, there is a directed path in G from x to y.

Adjacency Matrix Representation

A graph may be represented by a twodimensional adjacency matrix:

If G has $\mathrm{n}=|\mathrm{V}|$ vertices, let M be an n by n matrix whose entries are defined by

$$
m_{i j}=\left\{\begin{array}{cc}
1 & \text { if }(\mathrm{i}, \mathrm{j}) \text { is an edge } \\
0 & \text { otherwise }
\end{array}\right.
$$

6

$$
M(G)=\left[\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The adjacency table:

- $\Theta(1)$ to determine existence of a specific edge
- $\Theta\left(|\mathrm{V}|^{2}\right)$ storage cost (cut cost by 75% or more by changing types)
- $\Theta(|\mathrm{V}|)$ for finding all vertices accessible from a specific vertex
- $\Theta(1)$ to add or delete an edge
- Not easy to add or delete a vertex; better for static graph structure.
- Symmetric matrix for undirected graph; so half is redundant then.

$$
M(G)=\left[\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Adjacency Table Representation
A slightly different approach is to represent only the adjacent nodes in the structure:

0	\mid	1	2	
1	\mid	4	7	8
2	\mid	0	3	4
3	\mid			
4	\mid	1	6	
5	\mid	4		
6	\mid			
7	\mid	1	8	
8	\mid			

Adjacency List Representation

The adjacency list structure is simply a linked version of the adjacency table:

Array of linked lists, where list nodes store node labels for neighbors.

Adjacency List Representation

The adjacency list structure:

- Worst case: $\Theta(|\mathrm{V}|)$ to determine existence of a specific edge
- $\Theta(|\mathrm{V}|+|\mathrm{E}|)$ storage cost
- Worst case: $\Theta(|\mathrm{V}|)$ for finding all neighbors of a specific vertex
- Worst case: $\Theta(|\mathrm{V}|)$ to add or delete an edge
- Still not easy to add or delete a vertex; however, we can use a linked list in place of the array.

> Note, for an undirected graph, the upper bound on the number of edges is:
> $|\mathrm{E}| \leq|\mathrm{V}| *(|\mathrm{~V}|-1)$
> So, the space comparison with the adjacency matrix scheme is not trivial.

```
public class AdjMatrix {
    private int numVertices;
    private boolean[] Marker; // used for vertex marking
    private int[][] Edge; // Edge[i][j] == 1 iff (i,j) exists
    public AdjMatrix(int numV) {...}
    public boolean addEdge(int Src, int Trm) {...}
    public boolean delEdge(int Src, int Trm) {...}
    public boolean hasEdge(int Src, int Trm) {.. firstNeighbor()returns
        the first vertex adjacent to
                                Src.
    public int firstNeighbor(int Src) {...}
    public int nextNeighbor(int Src, int Prev) {...}
    public boolean isMarked(int V) {...}
    public boolean Mark(int V) {...}
    public boolean unMark(int V) {...}
                                    nextNeighbor() returns
                                    the next vertex, after Prev,
                                    which is adjacent to Src.
```

```
    public void Clear() {...} // erase edges and vertex marks
    public void Display() {...}
}
```

