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Binary Trees

A binary tree is either empty, or it consists of a node called the root together with two 
binary trees called the left subtree and the right subtree of the root, which are disjoint 
from each other and from the root.

For example: ∅

Jargon: root node

internal node

leaf node

edge

level: 0

1

2
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Binary Tree Node Relationships  

A binary tree node may have 0, 1 or 2 child nodes.

A path is a sequence of adjacent (via the edges) nodes in the tree.

A subtree of a binary tree is either empty, or consists of a node in that tree and all of its 
descendent nodes.

child nodes of α

α

β γ

δ ε

φ η

parent node 
of β and γ

subtree rooted at γ

a descendant of 
α and γ
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Quick Application: Expression Trees

A binary tree may be used to represent an algebraic expression:

*

x –

+ 5

x y

( )5)( −+× yxx

If we visit the nodes of the binary tree in 
the correct order, we will construct the 
algebraic expression:

Each subtree represents a part of the entire 
expression…
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Traversals  

A traversal is an algorithm for visiting some or all of the nodes of a binary tree in some 
defined order.

A traversal that visits every node in a binary tree is called an enumeration.

α

β γ

δ ε

φ η

preorder: visit the node, then the 
left subtree, then the 
right subtree

postorder: visit the left subtree, then 
the right subtree, and 
then the node

inorder: visit the left subtree, then 
the node, then the right 
subtree

α  β  γ  δ  φ  η  ε

β  φ  η  δ  ε  γ  α

β  α  φ  δ  η  γ  ε
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Postorder Traversal Details

Consider the postorder traversal from a recursive perspective:

α

β γ

δ ε

φ η

postorder: postorder visit the left subtree, 

postorder visit the right subtree, 

then visit the node (no recursion)

If we start at the root:

POV sub(β)    |    POV sub(γ)   |   visit α

visit β POV sub(δ)  |  POV sub(ε)  |  visit γ

visit φ |  visit η |  visit δ visit ε
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Binary Search Trees

A binary search tree or BST is a binary tree that is either empty or in which the 
data element of each node has a key, and:

The general binary tree shown in the previous chapter is not terribly useful in practice.  
The chief use of binary trees is for providing rapid access to data (indexing, if you will) 
and the general binary tree does not have good performance.

Suppose that we wish to store data elements that contain a number of fields, and that 
one of those fields is distinguished as the key upon which searches will be performed.

1. All keys in the left subtree (if there is one) are less than the key in 
the root node.

2. All keys in the right subtree (if there is one) are greater than (or 
equal to)* the key in the root node.

3. The left and right subtrees of the root are binary search trees.

* In many uses, duplicate values are not allowed.
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BST Insertion  

Here, the key values are characters (and only key values are shown).

Inserting the following key values in the given order yields the given BST:

D  G  H  E  B  D  F  C D

B G

E H

D F

C

What is the resulting tree if the (same) key values are inserted in the order:

B  C  D  D  E  F  G  H or E  B  C  D  D  F  G  H

In a BST, insertion is always 
at the leaf level.  Traverse 
the BST, comparing the new 
value to existing ones, until 
you find the right spot, then 
add a new leaf node holding 
that value.
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Searching in a BST

D

B G

E HA C

Because of the key ordering imposed by a BST, searching resembles the binary search 
algorithm on a sorted array, which is O(log N) for an array of N elements.

A BST offers the advantage of purely dynamic storage, no wasted array cells and no 
shifting of the array tail on insertion and deletion.

Trace searching for the key value E.
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D

B G

E H

D F

C

BST Deletion

Deletion is perhaps the most complex operation on a BST, because the algorithm must 
result in a BST.  The question is:  what value should replace the one deleted?  As with 
the general tree, we have cases:

- Removing a leaf node is trivial, just set the relevant child pointer in the parent 
node to NULL.  

- Removing an internal node which has only one subtree is also trivial, just set 
the relevant child pointer in the parent node to target the root of the subtree.

NULL
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BST Deletion

- Removing an internal node which has two subtrees is more complex…

D

B G

F H

E F

C

Simply removing the node would 
disconnect the tree.  But what value 
should replace the one in the 
targeted node?

To preserve the BST property, we 
must take the smallest value from 
the right subtree, which would be 
the closest succcessor of the value 
being deleted.

Fortunately, the smallest value will always lie in the left-most node of the subtree.
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BST Deletion

So, we first find the left-most node 
of the right subtree, and then swap 
data values between it and the 
targeted node.

Note that at this point we don’t 
necessarily have a BST.

Now we must delete the copied 
value from the right subtree.

That looks straightforward here since the node in question is a leaf.  However…

- the node will NOT be a leaf in all cases

- the occurrence of duplicate values is a complicating factor

- so we might want to have a DeleteRightMinimum() function to clean up at 
this point

E

B G

F H

E F

C
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BST Deletion

Suppose we want to delete the 
value ‘E’ from the BST:

After swapping the ‘F’ with the ‘E’, 
we must delete

We must be careful to not confuse 
this with the other node containing 
an ‘F’.

Also, consider deleting the value ‘G’.  In this case, the right subtree is just a leaf node, 
whose parent is the node originally targeted for deletion.  

Moral:  be careful to consider ALL cases when designing.

E

B G

F H

F

C
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Balance in a BST

D

B G

E HA C

However, a BST with N nodes does not always provide O(log N) search times.

B

A G

C H

D

E

A well-balanced BST.  This 
will have log(N) search 
times in the worst case.

A poorly-balanced BST.  This 
will not have log(N) search 
times in the worst case.

A  B  C  D  E  G  H

What if we inserted the 
values in the order:
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Search Cost in a BST

From an earlier theorem on binary trees, we know that a binary tree that contains L nodes 
must contain at least 1 + log L levels.  

If the tree is full, we can improve the result to imply that a full binary tree that contains N 
nodes must contain at least log N levels.

So, for any BST, the there is always an element whose search cost is at least log N.

Unfortunately, it can be much worse.  If the BST is a "stalk" then the search cost for the 
last element would be N.

It all comes down to one simple issue:  how close is the tree to having minimum height?

Unfortunately, if we perform lots of random insertions and deletions in a BST, there is no 
reason to expect that the result will have nearly-minimum height.
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Cost of Insertion/Deletion in a BST

Clearly, once the parent is found, the remaining cost of inserting a new node in a BST is 
constant, simply allocating a new node object and setting a pointer in the parent node.

So, insertion cost is essentially the same as search cost.

For deletion, the argument is slightly more complex.  Suppose the parent of the targeted 
node has been found.  

If the parent has only one subtree, then the remaining cost is resetting a pointer in the 
parent and deallocating the node; that's constant.

But, if the parent has two subtrees, then an additional search must be carried out to find 
the minimum value in the right subtree, and then an element copy must be performed, and 
then that node must be removed from the right subtree (which is again a constant cost).

In either case, we have no more than the cost of a worst-case search to the leaf level, plus 
some constant manipulations.

So, deletion cost is also essentially the same as search cost.


