Summation Formulas

Let $\mathrm{N} \geq 0$, let A, B, and C be constants, and let f and g be any functions. Then:
$\sum_{k=1}^{N} C f(k)=C \sum_{k=1}^{N} f(k)$
S1: factor out constant
$\sum_{k=1}^{N} C=N C$

S3: sum of constant

$$
\sum_{k=0}^{N} 2^{k}=2^{N+1}-1
$$

S6: sum of $\mathbf{2 \wedge}^{\wedge} k$

$$
\sum_{k=1}^{N}(f(k) \pm g(k))=\sum_{k=1}^{N} f(k) \pm \sum_{k=1}^{N} g(k)
$$

S2: separate summed terms
$\sum_{k=1}^{N} k=\frac{N(N+1)}{2}$
S4: sum of k

$$
\sum_{k=1}^{N} k 2^{k-1}=(N-1) 2^{N}+1
$$

S7: sum of $k 2^{\wedge}(k-1)$

Let b be a real number, $\mathrm{b}>0$ and $\mathrm{b} \neq 1$. Then, for any real number $\mathrm{x}>0$, the logarithm of x to base b is the power to which b must be raised to yield x. That is:

$$
\log _{b}(x)=y \text { if and only if } b^{y}=x
$$

For example:

$$
\begin{aligned}
& \log _{2}(64)=6 \text { because } 2^{6}=64 \\
& \log _{2}(1 / 8)=-3 \text { because } 2^{-3}=1 / 8 \\
& \log _{2}(1)=0 \text { because } 2^{0}=1
\end{aligned}
$$

If the base is omitted, the standard convention in mathematics is that log base 10 is intended; in computer science the standard convention is that log base 2 is intended.

Let a and b be real numbers, both positive and neither equal to 1 . Let $\mathrm{x}>0$ and $\mathrm{y}>0$ be real numbers.

L1: $\log _{b}(1)=0$
L2: $\log _{b}(b)=1$
L3: $\log _{b}(x)<0$ for all $0<x<1$
L4: $\quad \log _{b}(x)>0$ for all $\mathrm{x}>1$
L5: $\log _{b}\left(b^{y}\right)=y$
L6: $b^{\log _{b}(x)}=X$

L7: $\quad \log _{b}(x y)=\log _{b}(x)+\log _{b}(y)$
L8: $\log _{b}\left(\frac{x}{y}\right)=\log _{b}(x)-\log _{b}(y)$
L9: $\quad \log _{b}\left(x^{y}\right)=y \log _{b}(x)$
L10: $\log _{b}(x)=\frac{\log _{a}(x)}{\log _{a}(b)}$

Definition:

Let $\mathrm{f}(\mathrm{x})$ be a function with domain (a, b) and let $\mathrm{a}<\mathrm{c}<\mathrm{b}$. The limit of $f(x)$ as x approaches c is L if, for every positive real number ε, there is a positive real number δ such that whenever $|\mathrm{x}-\mathrm{c}|<\delta$ then $|\mathrm{f}(\mathrm{x})-\mathrm{L}|<\varepsilon$.

The definition being cumbersome, the following theorems on limits are useful. We assume $f(x)$ is a function with domain as described above and that K is a constant.
c1: $\lim _{x \rightarrow c} K=K$
c2: $\lim _{x \rightarrow c} x=c$
c3: $\lim _{x \rightarrow c} x^{r}=c^{r}$ for all $r>0$

Here assume $f(x)$ and $g(x)$ are functions with domain as described above and that K is a constant, and that both the following limits exist (and are finite):

$$
\lim _{x \rightarrow c} f(x)=A
$$

$$
\lim _{x \rightarrow c} g(x)=B
$$

Then:
c4: $\lim _{x \rightarrow c} K f(x)=K \lim _{x \rightarrow c} f(x)$
c5: $\lim _{x \rightarrow c}(f(x) \pm g(x))=\lim _{x \rightarrow c} f(x) \pm \lim _{x \rightarrow c} g(x)$
c6: $\lim _{x \rightarrow c}\left(f(x)^{*} g(x)\right)=\lim _{x \rightarrow c} f(x)^{*} \lim _{x \rightarrow c} g(x)$
c7: $\lim _{x \rightarrow c}(f(x) / g(x))=\lim _{x \rightarrow c} f(x) / \lim _{x \rightarrow c} g(x)$ provided $B \neq 0$

Definition:
Let $\mathrm{f}(\mathrm{x})$ be a function with domain $[0, \infty)$. The limit of $f(x)$ as x approaches ∞ is L, where L is finite, if, for every positive real number ε, there is a positive real number N such that whenever $\mathrm{x}>\mathrm{N}$ then $|\mathrm{f}(\mathrm{x})-\mathrm{L}|<\varepsilon$.

The definition being cumbersome, the following theorems on limits are useful. We assume $f(x)$ is a function with domain $[0, \infty)$ and that K is a constant.
c8: $\lim _{x \rightarrow \infty} K=K$
c9: $\lim _{x \rightarrow \infty} \frac{1}{x}=0$

$$
\text { c10: } \lim _{x \rightarrow \infty} \frac{1}{x^{r}}=0 \text { for all } r>0
$$

Given a rational function the last two rules are sufficient if a little algebra is employed:

$$
\begin{array}{rlr}
\lim _{x \rightarrow \infty} \frac{7 x^{2}+5 x+10}{3 x^{2}+2 x+5} & =\lim _{x \rightarrow \infty} \frac{7+\frac{5}{x}+\frac{10}{x^{2}}}{3+\frac{2}{x}+\frac{5}{x^{2}}} & \begin{array}{l}
\text { Divide by highest power of } \\
\text { x from the denominator. }
\end{array} \\
& =\frac{\lim _{x \rightarrow \infty} 7+\lim _{x \rightarrow \infty} \frac{5}{x}+\lim _{x \rightarrow \infty} \frac{10}{x^{2}}}{\lim _{x \rightarrow \infty} 3+\lim _{x \rightarrow \infty} \frac{2}{x}+\lim _{x \rightarrow \infty} \frac{5}{x^{2}}} & \\
& =\frac{\text { Take limits term by term. }}{3+0+0} & \\
& =\frac{7}{3} &
\end{array}
$$

In some cases, the limit may be infinite. Mathematically, this means that the limit does not exist.

$$
\begin{aligned}
& \text { c11: } \begin{array}{l}
\lim _{x \rightarrow \infty} x^{r}=\infty \text { for all } r>0 \\
\text { c12: } \lim _{x \rightarrow \infty}\left(\log _{b} x\right)=\infty \\
\text { Example: } \lim _{x \rightarrow \infty} \frac{7 x^{2}+5 x+10}{2 x+5}=\lim _{x \rightarrow \infty} \frac{7 x+5+\frac{10}{x}}{2+\frac{5}{x}} \\
\\
\\
=\frac{\left.\lim _{x \rightarrow \infty} 7 x+e^{x}\right)=\infty}{\lim _{x \rightarrow \infty} 5+\lim _{x \rightarrow \infty} 2+\lim _{x \rightarrow \infty} \frac{5}{x}}=\infty
\end{array}
\end{aligned}
$$

l'Hôpital's Rule

In some cases, the reduction trick shown for rational functions does not apply:

$$
\lim _{x \rightarrow \infty} \frac{7 x+5 \log (x)+10}{2 x+5}=? ?
$$

In such cases, l'Hôpital's Rule is often useful. If $f(x)$ and $g(x)$ are differentiable functions such that

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=\infty
$$

then:

This also applies if the limit is 0 .

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Applying l'Hôpital's Rule:

$$
\lim _{x \rightarrow \infty} \frac{7 x+5 \log (x)+10}{2 x+5}=\lim _{x \rightarrow \infty} \frac{7+\frac{5}{x}}{2}=\frac{7}{2}
$$

Another example:

$$
\lim _{x \rightarrow \infty} \frac{x^{3}+10}{e^{x}}=\lim _{x \rightarrow \infty} \frac{3 x^{2}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{6 x}{e^{x}}=\lim _{x \rightarrow \infty} \frac{6}{e^{x}}=0
$$

Recall that:

$$
D\left[e^{f(x)}\right]=e^{f(x)} D[f(x)]
$$

Mathematical Induction

Mathematical induction is a technique for proving that a statement is true for all integers in the range from N_{0} to ∞, where N_{0} is typically 0 or 1 .

First (or Weak) Principle of Mathematical Induction
Let $\mathrm{P}(\mathrm{N})$ be a proposition regarding the integer N , and let S be the set of all integers k for which $\mathrm{P}(\mathrm{k})$ is true. If

1) N_{0} is in S, and
2) whenever N is in S then $N+1$ is also in S,
then S contains all integers in the range $\left[\mathrm{N}_{0}, \infty\right)$.

To apply the PMI, we must first establish that a specific integer, N_{0}, is in S (establishing the basis) and then we must establish that if a arbitrary integer, $\mathrm{N} \geq \mathrm{N}_{0}$, is in S then its successor, $\mathrm{N}+1$, is also in S .

Theorem: For all integers $\mathrm{n} \geq 1, \mathrm{n}^{2}+\mathrm{n}$ is a multiple of 2 .
proof: Let S be the set of all integers for which $\mathrm{n}^{2}+\mathrm{n}$ is a multiple of 2 .
If $\mathrm{n}=1$, then $\mathrm{n}^{2}+\mathrm{n}=2$, which is obviously a multiple of 2 . This establishes the basis, that 1 is in S .

Now suppose that some integer $k \geq 1$ is an element of S. Then $k^{2}+k$ is a multiple of 2. We need to show that $k+1$ is an element of S; in other words, we must show that $(\mathrm{k}+1)^{2}+(\mathrm{k}+1)$ is a multiple of 2. Performing simple algebra:

$$
(\mathrm{k}+1)^{2}+(\mathrm{k}+1)=\left(\mathrm{k}^{2}+2 \mathrm{k}+1\right)+(\mathrm{k}+1)=\mathrm{k}^{2}+3 \mathrm{k}+2
$$

Now we know $\mathrm{k}^{2}+\mathrm{k}$ is a multiple of 2 , and the expression above can be grouped to show:

$$
(k+1)^{2}+(k+1)=\left(k^{2}+k\right)+(2 k+2)=\left(k^{2}+k\right)+2(k+1)
$$

The last expression is the sum of two multiples of 2 , so it's also a multiple of 2 .
Therefore, $\mathrm{k}+1$ is an element of S .
Therefore, by PMI, S contains all integers $[1, \infty)$.

Theorem: Every integer greater than 3 can be written as a sum of 2's and 5's.
(That is, if $\mathrm{N}>3$, then there are nonnegative integers x and y such that $\mathrm{N}=2 \mathrm{x}+5 \mathrm{y}$.)

This is not (easily) provable using the First Principle of Induction. The problem is that the way to write $\mathrm{N}+1$ in terms of 2 's and 5 's has little to do with the way N is written in terms of 2 's and 5 's. For example, if we know that

$$
N=2 x+5 y
$$

we can say that

$$
\mathrm{N}+1=2 \mathrm{x}+5 \mathrm{y}+1=2 \mathrm{x}+5(\mathrm{y}-1)+5+1=2(\mathrm{x}+3)+5(\mathrm{y}-1)
$$

but we have no reason to believe that $\mathrm{y}-1$ is nonnegative. (Suppose for example that N is 9.)

"Strong" Form of Induction

There is a second statement of induction, sometimes called the "strong" form, that is adequate to prove the result on the preceding slide:

Second (or Strong) Principle of Mathematical Induction

Let $\mathrm{P}(\mathrm{N})$ be a proposition regarding the integer N , and let S be the set of all integers k for which $\mathrm{P}(\mathrm{k})$ is true. If

1) N_{0} is in S, and
2) whenever N_{0} through N are in S then $\mathrm{N}+1$ is also in S , then S contains all integers in the range $\left[\mathrm{N}_{0}, \infty\right)$.

Interestingly, the "strong" form of induction is logically equivalent to the "weak" form stated earlier; so in principle, anything that can be proved using the "strong" form can also be proved using the "weak" form.

Using the Second Form of Induction

Theorem: Every integer greater than 3 can be written as a sum of 2's and 5's.
proof: Let S be the set of all integers $\mathrm{n}>3$ for which $\mathrm{n}=2 \mathrm{x}+5 \mathrm{y}$ for some nonnegative integers x and y.

If $\mathrm{n}=4$, then $\mathrm{n}=2 * 2+5^{*} 0$. If $\mathrm{n}=5$, then $\mathrm{n}=2 * 0+5^{*} 1$. This establishes the basis, that 4 and 5 are in S.

Now suppose that all integers from 4 through k are elements of S , where $\mathrm{k} \geq$ 5. We need to show that $\mathrm{k}+1$ is an element of S ; in other words, we must show that $\mathrm{k}+1=2 \mathrm{r}+5 \mathrm{~s}$ for some nonnegative integers r and s .

Now $k+1 \geq 6$, so $k-1 \geq 4$. Therefore by our assumption, $k-1=2 x+5 y$ for some nonnegative integers x and y. Then, simple algebra yields that:
$\mathrm{k}+1=\mathrm{k}-1+2=2 \mathrm{x}+5 \mathrm{y}+2=2(\mathrm{x}+1)+5 \mathrm{y}$,
whence $\mathrm{k}+1$ is an element of S .
Therefore, by the Second PMI, S contains all integers [4, ∞).

Consider the sequences $\left\{\mathrm{a}_{\mathrm{k}}\right\}$ and $\left\{\mathrm{d}_{\mathrm{k}}\right\}$:

$$
a_{k}=2^{k}-1 \text { for } k \geq 0
$$

$$
\left\{\begin{array}{c}
d_{0}=0, d_{1}=1 \\
d_{k}=3 d_{k-1}-2 d_{k-2} \text { for } k \geq 2
\end{array}\right.
$$

Then for all $k \geq 0 . a_{k}=d_{k}$.
proof: Let $\mathrm{S}=\left\{\mathrm{k} \geq 0 \mid \mathrm{a}_{\mathrm{k}}=\mathrm{d}_{\mathrm{k}}\right\}$.
Trivial calculations show that $\mathrm{a}_{0}=\mathrm{d}_{0}$ and $\mathrm{a}_{1}=\mathrm{d}_{1}$, so 0 and 1 are in S .
Suppose that there is some $\mathrm{N} \geq 1$ such that $0,1, \ldots, \mathrm{~N}$ are in S . In other words, assume that there is some $\mathrm{N} \geq 1$ such that $\mathrm{a}_{\mathrm{i}}=\mathrm{d}_{\mathrm{i}}$ for all i from 0 to N .

Now, $\mathrm{N}+1 \geq 2$, so from the definition of $\left\{\mathrm{d}_{\mathrm{k}}\right\}$ and the inductive assumption we have:

$$
\begin{aligned}
d_{N+1} & =3 d_{N}-2 d_{N-1} \\
& =3\left(2^{N}-1\right)-2\left(2^{N-1}-1\right) \\
& =3 \cdot 2^{N}-3-2^{N}+2 \\
& =2 \cdot 2^{N}-1 \\
& =2^{N+1}-1
\end{aligned}
$$

Therefore $N+1$ is in S, and so by the principle of induction, $S=\{k \geq 0\} . \quad$ QED

