
CS 2604 Data Structures Midterm Summer 2000

 Page 1 of 6

V
IR

G
IN

IA

PO
LYTECHNIC

INSTITU
TE

A
N

D

STATE UNI VERSI T
Y

UT PROSI M

Instructions:

• Print your name in the space provided below.
• This examination is closed book and closed notes. No calculators or other computing devices may be

used.
• Answer each question in the space provided. If you need to continue an answer onto the back of a

page, clearly indicate that and label the continuation with the question number.
• If you want partial credit, justify your answers, even when justification is not explicitly required.
• There are 11 questions, priced as marked. The maximum score is 100.
• When you have completed the test, sign the pledge at the bottom of this page and turn in the test.
• Note that failure to return this test, or to discuss its content with a student who has not taken it, is a

violation of the Honor Code.

Do not start the test until instructed to do so!

Name Solution
 printed

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 signed

CS 2604 Data Structures Midterm Summer 2000

 Page 2 of 6

1. [10 points] For each of the following sorting algorithms, give big-Theta notation for the average and worst-case running
times (swaps plus compares) on input of size N:

Algorithm Average Worst
InsertionSort n^2 n^2

QuickSort n log n n^2

HeapSort n log n n log n

2. [5 points] The implementation of QuickSort in Kruse/Ryba selects the pivot value from the middle of the sublist, rather

than from one of the ends. Explain a reasonable motivation for that decision.

 The worst case for QuickSort is achieved if each pivot is either the maximum or minimum value in the

current sublist. If the list is already sorted, then choosing either the first or last element guarantees the
worst case is achieved. Choosing from the middle is a hedge against that.

3. [5 points] Aside from switching to a nonrecursive implementation, describe one modification of the implementation of

QuickSort given in the course notes that will improve its performance.

 When sublists become relatively short, say length 10, apply an efficient alternative, such as an

insertion sort to complete the sorting of that sublist. This eliminates many recursive calls.

 Choose the pivot value more carefully. For example, find three distinct values in the current sublist

and take their median value. If there are not three distinct values, then the sublist is nearly sorted and
can be efficiently finished off using another sort, such as insertion.

4. [10 points] Indicate whether each of the following statements is true or false:

a) f(n) = 5n2 + 3n + 2 is Θ (n) TRUE FALSE

b) f(n) = 5n2 + 3n + 2 is Ω(n) TRUE FALSE

c) g(n) = 3n + 100 log n is O(n2) TRUE FALSE

d) g(n) = 3n + 100 log n is Ω(n) TRUE FALSE

e) g(n) = 3n + 100 log n is O(log n) TRUE FALSE

CS 2604 Data Structures Midterm Summer 2000

 Page 3 of 6

5. You must keep track of some data. Your options are:

1) a binary search tree of records (assume it is well balanced)
2) a linked-list of records stored in order of insertion
3) an array-based list of records maintained in sorted order

a) [12 points] Suppose that you must first build a data structure holding 210 given elements, and then you must

perform 220 searches on that data structure. For each option, use the average case big-Θ time complexity results of
each data structure to determine the costs associated with that data structure in this situation. Since you know
exactly how many elements are stored, and how many searches must be performed, the cost values should be
numbers, not expressed in terms of N.

 Note that space cost is not a consideration.

Option Cost of construction Cost of 220 searches Total Cost
BST 10x210 10x220

unsorted
linked list

210 229

sorted array 220

or

11x210

10x220

BST: Building costs n log n, which would be 210 log 210 = 10x210.
 Assuming a balanced BST, each search costs on average log n, which would be log 210 = 10, so

the total cost of 220 searches would be 10x220.

LL: Building costs n or 210, since each insertion has cost 1.
 Search, on average costs n/2 or 29, and so the total cost of 220 searches would be 229.

SA: Building cost depends on the method you assume. Inserting the elements one by one in sorted

order would have cost n2 or 220. Inserting the elements into an array and then sorting
efficiently would cost n + n log n, which would be 210 + 210 log 210 or 10x210 + 210 = 11x210.

 Each search would have cost log n, or log 210 = 10. So the total cost of all the searches would
be 10x220.

b) [3 points] Based on your analysis above, which of the data structures would be the worst choice in the given
situation?

The linked list has the worst overall cost.

CS 2604 Data Structures Midterm Summer 2000

 Page 4 of 6

6. [10 points] Use limits to prove that f(n) = n log n is NOT Θ(n2).

By a theorem, f(n) is Θ(g(n)) if and only if c
ng
nf =

∞→)(
)(limit

n
where c is a positive, finite constant.

Now, 0
2ln

1limit
1

)2ln/(1limitloglimitloglimit
nnn2n

====
∞→∞→∞→∞→ n

n
n

n
n

nn so by the cited theorem, n log n is

NOT Θ(n^2).

7. [10 points] Suppose that T is a full binary tree.

 The Full Binary Tree Theorem says that an FBT with k internal nodes has k+1 leaf nodes. Applying

that fact:

a) If T has 100 internal nodes then the number of leaves in T is 101 .

b) If T has a total of 1001 nodes, then 500 of them must have children.

8. [10 points] Draw the BST that results from inserting the following data values in the order given:

 42 17 89 53 72 91 3 88

42

53

8917

88

3 91

72

CS 2604 Data Structures Midterm Summer 2000

 Page 5 of 6

9. [5 points] Consider the heap given below. If the heap elements were stored in an array, as usual, what element would
be stored at the index 7?

10. [10 points] Consider the BST and NodeT template interfaces given at the bottom of this page. Write the body of the

member function Find(), which returns true if its parameter occurs in the BST and false otherwise.

template <class Data> bool BST<Data>::Find(const Data& toFind) {

return FindHelper(Root, toFind);
}

template <class Data>
bool BST<Data>::FindHelper(NodeT<Data>* sRoot,

const Data& toFind) {

if (sRoot == NULL) return false;

Data currentData = sRoot->getData();

if (currentData == toFind) return true;

if (toFind < currentData)
return FindHelper(sRoot->getLeft(), toFind);

else
return FindHelper(sRoot->getRight(), toFind);

}

93

79

91

67 42

84

83

6156 2173 80

template <class Data> class BSTreeT {
private:

NodeT<Data>* Root;

// irrelevant members omitted
public:

// irrelevant members omitted
bool Find(const Data& D);

};

template <class Data> class NodeT {
private:

Data Element;
NodeT<Data>* Left;
NodeT<Data>* Right;

public:
// irrelevant members omitted
Data getData() const;
NodeT<Data>* getLeft() const;
NodeT<Data>* getRight() const;

};

0

1 2

3 4 5 6

7

CS 2604 Data Structures Midterm Summer 2000

 Page 6 of 6

11. Consider the BinaryTreeT template interface given at the bottom of this page.

template <class Data>
void BinaryTreeT<Data>::ClearHelper(NodeT<Data>* sRoot) {

if (sRoot == NULL) return;

ClearHelper(sRoot->getLeft());
delete sRoot;
ClearHelper(sRoot->getRight());

}

template <class Data> BinaryTreeT<Data>::~BinaryTreeT() {

ClearHelper(Root);
}

a) [2 points] What type of traversal does ClearHelper() perform on the tree? inorder

b) [8 points] Will the given destructor correctly delete all of the tree nodes? No.

 If not, write any modifications that are necessary to fix the problem below:

template <class Data>
void BinaryTreeT<Data>::ClearHelper(NodeT<Data>* sRoot) {

if (sRoot == NULL) return;

ClearHelper(sRoot->getLeft());
ClearHelper(sRoot->getRight());
delete sRoot;

}

template <class Data> class BinaryTreeT {
protected:

NodeT<Data>* Root;
NodeT<Data>* Current;
// . . . irrelevant protected member functions omitted
void ClearHelper(NodeT<Data>* sRoot);

public:
BinaryTreeT();
BinaryTreeT(Data newData);

// . . . irrelevant public member functions omitted

~BinaryTreeT();
};

