CS 3114 Data Structures & Algorithms Homework 2: Complexity Analysis

You will submit your solution to this assignment to the Curator System (as HW2). Your solution must be either a plain text file
(e.g., NotePad) or a typed MS Word document; submissions in other formats will not be graded.

Partial credit will only be given if you show relevant work.

1.

[20 points] Apply the exact analysis rules from the course notes (Slide 7, T06.AlgorithmAnalysis.pdf) to determine a
complexity function T(N) for the following algorithm. You must simplify your answer completely (no summation
formulas, all terms combined as far as possible).

Limit = N; /7 1
Result = 1; // 1
for (i = 1; i <= N; i++) { // 1 before, 2 per pass; 1 to exit
if (i1 %2=0) // 2 per pass
Result = 1 * Result; // 2, if done
else

Result = Result + i1 * i; // 3, if done
b

N N

T(N)=3+> (2+2+max(2,3))+1=)(7)+4=7N +4
i=1 i=1

If you counted i++ as 2 operations, you would get: 8N +4.

[20 points] Apply the exact analysis rules from the course notes (Slide 7, T06.AlgorithmAnalysis.pdf) to determine a
complexity function T(N) for the following algorithm. You must simplify your answer completely (no summation
formulas, all terms combined as far as possible).

Limit = N; /7 1

Sum = 1; /7 1

for (i = 1; i <= N; i++) { // 1 before, 2 per outer pass, 1 to exit
for g =1; j <=1i; j++t) { // 1 before, 2 per inner pass, 1 to exit
Y Sum = Sum + i1 * j; // 3

}

T(N)=3+Zi:(2+1+zi_;(2+3)+1}+1=Zi:(i(5)+4}+4=i(5i+4)+4=SWJAN +4

j=1 i=1
AN BNy
2 2

If you counted i++ and j++ as 2 operations, you would get: 3N* +8N +4.

CS 3114 Data Structures & Algorithms Homework 2: Complexity Analysis

3. [20 points] Apply the exact analysis rules from the course notes (Slide 7, T06.AlgorithmAnalysis.pdf) to determine a
complexity function T(N) for the following algorithm. You must simplify your answer completely (no summation
formulas, all terms combined as far as possible).

Limit = 1 << N; // Limit == 2”™"N: 2
Sum = O; /7 1
X = 1; /7 1

for (i =1; 1 <=N; 1 =2 *1) { // 1 before, 3 per pass, 1 to exit

wn
c
3
I
wn
c
3
+
-
*
>

// 3 per pass
X4+ // 1 per pass

The key here is that the loop body will be executed 1+ ﬂog N1 times since i will

count from 2° to N = 2"¢N,

1+[logN | 1+[logN |
T(N)=5+ > (3+3+1)+1= > (7)+6=7(1+[logN])+6="7[logN|+13
pass=1 pass=1

If you counted X++ as 2 operations, you would get: 8] log N |+14.

4. [15 points] State the simplest possible big-® equivalent for each given function. No justification is required.

a) f(n)=3nlogn+17n*+8logn+42n+100
f(n)is ©(n’)

b) g(n)=1000n+logn
g(n) is ©(n)

¢) h(n)=10+7n" +2"

h(n) is ©(2")

CS 3114 Data Structures & Algorithms Homework 2: Complexity Analysis

5.

[25 points] Use any applicable theorems from the course notes to prove the following two facts:

a) f(n)=n’logn+nlog’n is @(nzlogn)
b) f(n)=n*logn+nlog’n is strictly Q(nlog2 n)

Note: log2 n= (log n)z.

The only theorems that will help with this are the Limit Theorem (Theorem 8) and its corollary. First of all:

2 2
. ..n"logn+nlog n .. . logn . ..1/nln2 .
limit g > g n_ limit| 1+ AL 1+ limit —— =1+ limit =1
n—o n logn n—o n n—o 1 n—o Nln?2
Therefore, by Theorem 8, the first statement is true.
And:
._..n*logn+nlog’n . . . 1 .
limit 5 = limit +1 [=1+1limit———=1+1imitnln2 =00
n—w nlog n n—»wo logn n—»» 1/nln?2 n—»oo

So, by the Corollary to Theorem 8, the second statement is also true.

