You will submit your solution to this assignment to the Curator System (as HW2). Your solution must be either a plain text file (e.g., NotePad) or a typed MS Word document; submissions in other formats will not be graded.

Partial credit will only be given if you show relevant work.

1. [20 points] Apply the exact analysis rules from the course notes (Slide 7, T06.AlgorithmAnalysis.pdf) to determine a complexity function $\mathrm{T}(\mathrm{N})$ for the following algorithm. You must simplify your answer completely (no summation formulas, all terms combined as far as possible).
```
Limit = N; // 1
Result = 1; // 1
    for (i = 1; i <= N; i++) { // 1 before, 2 per pass; 1 to exit
        if ( i % 2 == 0 ) // 2 per pass
        Result = i * Result; // 2, if done
        else
            Result = Result + i * i; // 3, if done
    }
```


If you counted $i++$ as 2 operations, you would get: $8 N+4$.
2. [20 points] Apply the exact analysis rules from the course notes (Slide 7, T06.AlgorithmAnalysis.pdf) to determine a complexity function $\mathrm{T}(\mathrm{N})$ for the following algorithm. You must simplify your answer completely (no summation formulas, all terms combined as far as possible).

```
Limit = N; // 1
Sum = 1; // 1
for (i = 1; i <= N; i++) { // 1 before, 2 per outer pass, 1 to exit
        for (j = 1; j <= i; j++) { // 1 before, 2 per inner pass, 1 to exit
            Sum = Sum + i * j; // 3
    }
}
\(T(N)=3+\sum_{i=1}^{N}\left(2+1+\sum_{j=1}^{i}(2+3)+1\right)+1=\sum_{i=1}^{N}\left(\sum_{j=1}^{i}(5)+4\right)+4=\sum_{i=1}^{N}(5 i+4)+4=5 \frac{N(N+1)}{2}+4 N+4\) \(=\frac{5}{2} N^{2}+\frac{13}{2} N+4\)
```

If you counted $\mathrm{i}++$ and $\mathrm{j}++$ as 2 operations, you would get: $3 \mathrm{~N}^{2}+8 N+4$.
3. [20 points] Apply the exact analysis rules from the course notes (Slide 7, T06.AlgorithmAnalysis.pdf) to determine a complexity function $\mathrm{T}(\mathrm{N})$ for the following algorithm. You must simplify your answer completely (no summation formulas, all terms combined as far as possible).

```
Limit = 1 << N; // Limit == 2^N: 2
Sum = 0; // 1
X = 1; // 1
for (i = 1; i <= N; i = 2 * i) { // 1 before, 3 per pass, 1 to exit
    Sum = Sum + i * X; // 3 per pass
    X++; // 1 per pass
}
```

The key here is that the loop body will be executed $1+\lceil\log N\rceil$ times since i will count from 2^{0} to $N=2^{\log N}$.
$T(N)=5+\sum_{\text {pass }=1}^{1+\lceil\log N\rceil}(3+3+1)+1=\sum_{\text {pass }=1}^{1+\lceil\log N\rceil}(7)+6=7(1+\lceil\log N\rceil)+6=7\lceil\log N\rceil+13$
If you counted $\mathrm{X}++$ as 2 operations, you would get: $8\lceil\log N\rceil+14$.
4. [15 points] State the simplest possible big- Θ equivalent for each given function. No justification is required.
a) $f(n)=3 n \log n+17 n^{2}+8 \log n+42 n+100$
$f(n)$ is $\Theta\left(n^{2}\right)$
b) $g(n)=1000 n+\log n$
$g(n)$ is $\Theta(n)$
c) $h(n)=10+7 n^{50}+2^{n}$
$h(n)$ is $\Theta\left(2^{n}\right)$
5. [25 points] Use any applicable theorems from the course notes to prove the following two facts:
a) $\quad f(n)=n^{2} \log n+n \log ^{2} n$ is $\Theta\left(n^{2} \log n\right)$
b) $\quad f(n)=n^{2} \log n+n \log ^{2} n$ is strictly $\Omega\left(n \log ^{2} n\right)$

Note: $\log ^{2} n=(\log n)^{2}$.
The only theorems that will help with this are the Limit Theorem (Theorem 8) and its corollary. First of all:

$$
\operatorname{limit}_{n \rightarrow \infty} \frac{n^{2} \log n+n \log ^{2} n}{n^{2} \log n}=\operatorname{limit}_{n \rightarrow \infty}\left(1+\frac{\log n}{n}\right)=1+\operatorname{limit}_{n \rightarrow \infty} \frac{1 / n \ln 2}{1}=1+\operatorname{limit}_{n \rightarrow \infty} \frac{1}{n \ln 2}=1
$$

Therefore, by Theorem 8, the first statement is true.
And:

$$
\operatorname{limiit}_{n \rightarrow \infty} \frac{n^{2} \log n+n \log ^{2} n}{n \log ^{2} n}=\operatorname{limit}_{n \rightarrow \infty}\left(\frac{n}{\log n}+1\right)=1+\operatorname{limit}_{n \rightarrow \infty} \frac{1}{1 / n \ln 2}=1+\operatorname{limit}_{n \rightarrow \infty} n \ln 2=\infty
$$

So, by the Corollary to Theorem 8, the second statement is also true.

