You will submit your solution to this assignment to the Curator System (as HW2). Your solution must be either a plain text file (e.g., NotePad) or a typed MS Word document; submissions in other formats will not be graded.

Partial credit will only be given if you show relevant work.

1. [20 points] Apply the exact analysis rules from the course notes (Slide 7, T06.AlgorithmAnalysis.pdf) to determine a complexity function $\mathrm{T}(\mathrm{N})$ for the following algorithm. You must simplify your answer completely (no summation formulas, all terms combined as far as possible).
```
Limit = N;
Result = 1;
    for (i = 1; i <= N; i++) {
        if ( i % 2 == 0 )
            Result = i * Result;
        else
        Result = Result + i * i;
    }
```

2. [20 points] Apply the exact analysis rules from the course notes (Slide 7, T06.AlgorithmAnalysis.pdf) to determine a complexity function $\mathrm{T}(\mathrm{N})$ for the following algorithm. You must simplify your answer completely (no summation formulas, all terms combined as far as possible).
```
Limit = N;
    Sum = 1;
    for (i = 1; i <= N; i++) {
        for (j = 1; j <= i; j++) {
            Sum = Sum + i * j;
        }
    }
```

3. [20 points] Apply the exact analysis rules from the course notes (Slide 7, T06.AlgorithmAnalysis.pdf) to determine a complexity function $\mathrm{T}(\mathrm{N})$ for the following algorithm. You must simplify your answer completely (no summation formulas, all terms combined as far as possible).
```
Limit = 1 << N; // Limit == 2^N
Sum = 0;
X = 1;
    for (i = 1; i <= N; i = 2 * i) {
    Sum = Sum + i * X;
    X++;
}
```

4. [15 points] State the simplest possible big- Θ equivalent for each given function. No justification is required.
a) $f(n)=3 n \log n+17 n^{2}+8 \log n+42 n+100$
b) $g(n)=1000 n+\log n$
c) $h(n)=10+7 n^{50}+2^{n}$
5. [25 points] Use any applicable theorems from the course notes to prove the following two facts:
a) $f(n)=n^{2} \log n+n \log ^{2} n$ is $\Theta\left(n^{2} \log n\right)$
b) $\quad f(n)=n^{2} \log n+n \log ^{2} n$ is strictly $\Omega\left(n \log ^{2} n\right)$

Note: $\log ^{2} n=(\log n)^{2}$.

