
CS3114 (Fall 2009)

Project #2
Due Wednesday, Oct 28 @ 11:55 PM for 100 points

Initial Schedule due Wednesday, October 14 @ 11:55 PM
Revised Schedule due Wednesday, October 21 @ 11:55 PM

Revised 10/6/2009

Project Description: For this project, you will implement an external

sorting algorithm for binary data. The input data file will consist of 8 × N

blocks of data, where a block is 4096 bytes. Each block will contain a series of
records, where each record has 8 bytes. The first 4-byte field is an unsigned
integer value for the record id and the second 4-byte field is a float value
for the key, which will be used for sorting. Thus each block contains 512
records.

Your job is to sort the file (in ascending order of the key values), as
follows. Using replacement selection (as described in the class notes), you
will sort sections of the file in a working memory that is 8 blocks long. To
be precise, the heap will be 8 blocks in size; in addition you will also have a
one block input buffer, a one block output buffer and any additional working
variables that you need. To process, read the first 8 blocks of the input file
into memory and use replacement selection to create the longest possible
run. As it is being created, the run is output to the one block output buffer.
Whenever this output buffer becomes full, it is written to an output file called
the run file. When the first run is complete, continue on to the next section
of the input file, adding the second run to the end of the run file. When the
process of creating runs is complete, the run file will contain some number
of runs, each run being at least 8 blocks long, with the data sorted within
each run. For convenience, you will probably want to begin each run in a
new block.

You will then use a multi-way merge to combine the runs into a single
sorted file. You must reuse the 8 blocks of memory used for the
heap in the run-building step to store working data from the runs
during the merge step. Multi-way merging is done by reading the first
block from each of the runs currently being merged into your working area,
and merging these runs into the one block output buffer. When the output
buffer fills up, it is written to the another output file. Whenever one of the
input blocks is exhausted, read in the next block for that particular run. This

1



step requires random access (using seek) to the run file, and a sequential write
of the output file. Depending on the size of all records, you may need
multiple passes of multiway-merging to sort the whole record.

Invocation and I/O Files:
The program will be invoked from the command-line as:

extsort <data-file-name> <stat-file-name>

The data file <data-file-name> is the file to be sorted. At the end of
your program, the data file (on disk) should be sorted. So this program does
modify the input data file. Be careful to keep a copy of the original when
you do your testing.

In addition to sorting the data file, you must report some information
about the execution of your program.

1. You will need to report part of the sorted data file to standard output.
Specifically, your program will print the first record from each 4096-
byte block, in order, from the sorted data file. The records are to be
printed 5 records to a line (showing both the key value and the id value
for each record), the values separated by whitespace and formatted into
columns. This program output must appear EXACTLY as described;
ANY deviation from this requirement will result in a significant deduc-
tion in points.

2. You will generate and output some statistics about the execution of
your program. Formatting does not matter as long as we can tell what
each statistic is. Write these statistics to <stat-file-name>. Your
code will be tested with different sample files. Make sure your program
DOES NOT overwrite <stat-file-name> each time it is run; instead,
have it append new statistics to the end of the file. The information to
write is as follows.

(a) The name of the data file being sorted.

(b) The time that your program took to execute the heapsort. Put two
calls to the standard Java timing method “System.currentTimeMillis()’”
in your program, one at the beginning and another at the end.
This method returns a long value. The difference between the two
values will be the total runtime in milliseconds. You should ONLY
time the sort, and not the program output as described above.

2



Programming Standards:
You must conform to good programming/documentation standards. Some

specifics:

• You must include a header comment, preceding main(), specifying the
compiler and operating system used and the date completed.

• Your header comment must describe what your program does; don’t
just plagiarize language from this spec.

• You must include a comment explaining the purpose of every variable
or named constant you use in your program.

• You must use meaningful identifier names that suggest the meaning or
purpose of the constant, variable, function, etc.

• Always use named constants or enumerated types instead of literal
constants in the code.

• Precede every major block of your code with a comment explaining
its purpose. You don’t have to describe how it works unless you do
something so sneaky it deserves special recognition.

• You must use indentation and blank lines to make control structures
more readable.

• Precede each function and/or class method with a header comment
describing what the function does, the logical significance of each pa-
rameter (if any), and pre- and post-conditions.

• Decompose your design logically, identifying which components should
be objects and what operations should be encapsulated for each.

Neither the GTAs nor the instructors will help any student debug an im-
plementation unless it is properly documented and exhibits good program-
ming style. Be sure to begin your internal documentation right from the
start.

You may only use code you have written, either specifically for this project
or for earlier programs, or code taken from the textbook. Note that the
textbook code is not designed for the specific purpose of this assignment,

3



and is therefore likely to require modification. It may, however, provide a
useful starting point.

Testing:
A sample data file will be posted to the website to help you test your

program. This is not the data file that will be used in grading your program.
The test data provided to you will attempt to exercise the various syntactic
elements of the command specifications. It makes no effort to be comprehen-
sive in terms of testing the data structures required by the program. Thus,
while the test data provided should be useful, you should also do testing on
your own test data to ensure that your program works correctly.

Deliverables:
When structuring the source files of your project, use a flat directory

structure; that is, your source files will all be contained in the project root.
Any subdirectories in the project will be ignored. If you used a makefile to
compile your code, be sure to include any necessary files or instructions so
that the TAs can compile it.

Your submission should be archived as one file, which should contain all of
the source code for the project, along with any files or instructions necessary
to compile the code. If you need to explain any pertinent information to
aid the TA in the grading of your project, you may include an optional
“README” file in your submitted archive.

You will submit your project through the scholar/??? system. If you
make multiple submissions, only your last submission will be evaluated.

4



Scheduling:
In addition to the project submission, you are also required to submit

an initial project schedule and a revised schedule before the corresponding
deadlines. You won’t receive direct credit for submitting the schedules as
required, but each instance of failing to submit scheduling information as
required will lose 5 points from the project grade.

Pledge:
Your project submission must include a statement, pledging your con-

formance to the Honor Code requirements for this course. Specifically, you
must include the following pledge statement near the beginning of the file
containing the function main() in your program. The text of the pledge will
also be posted online.

// On my honor:

//

// - I have not used source code obtained from another student,

// or any other unauthorized source, either modified or unmodified.

//

// - All source code and documentation used in my program

// is either my original work, or was derived by me from the source

// code published in the textbook for this course.

//

// - I have not discussed coding details about this project with anyone

// other than my instructor, ACM/UPE tutors or the GTAs assigned to this

// course. I understand that I may discuss the concepts of this program

// with other students, and that another student may help me debug my

// program so long as neither of us writes anything during the discussion

// or modifies any computer file during the discussion. I have violated

// neither the spirit nor letter of this restriction.

//

Programs that do not contain this pledge will not be graded.

5


