
B Trees

Data Structures & Algorithms

1

CS@VT ©2000-2009 McQuain

Large Trees
Trees can be used to store entire records from a database, serving as an in-memory
representation of the collection of records in a file.

Trees can also be used to store indices of the collection of records in a file.

In either case, if the collection of records is quite large, the tree may be so large that it is
unacceptable to store it all in memory at once.

For example, if we have a database file holding 230 records, and each index entry requires
8 bytes of storage, a BST holding the index would require 230 nodes, each taking 16
bytes of memory (assuming 32-bit pointers), or 16 GB of memory.

An alternative would be to store the entire tree in a file on disk, and only load the
immediately relevant portions of it into memory…

B Trees

Data Structures & Algorithms

2

CS@VT ©2000-2009 McQuain

Disk Representation
It is a relatively simple matter to write any binary tree to a disk file, by representing each
tree node by a data record that holds the data element and two file offsets specifying the
locations of the children, if any of that node.

D

B G

E H

D F

C

Data lChild rChild
0 D 24 72
24 B -1 48
48 C -1 -1
72 G 96 168
96 E 120 144
120 D -1 -1
144 F -1 -1
168 H -1 -1

The nodes don't need to be stored in any
particular order.

Null pointers may be represented by a
negative offset.

B Trees

Data Structures & Algorithms

3

CS@VT ©2000-2009 McQuain

Disk Representation
The problem is that this disk representation will require too many individual disk
accesses when processing a typical tree operation, such as a search or a traversal.

Why?

These tree operations typically require transiting from a node to one or both of its
children.

Data lChild rChild
0 D 24 72
24 B -1 48
48 C -1 -1
72 G 96 168
96 E 120 144
120 D -1 -1
144 F -1 -1
168 H -1 -1

But there's no reason that the child nodes
will be stored anywhere near the parent
node (although we could at least guarantee
that siblings are adjacent).

Since each node stores only one data value,
and the nodes we might well perform one
disk access for every node that is accessed
during the tree operation.

Given the extremely slow nature of disk
access, this is unacceptable.

B Trees

Data Structures & Algorithms

4

CS@VT ©2000-2009 McQuain

B Trees
A B-tree of order m is a multi-way tree such that:

- the root has at least two subtrees, unless it is a leaf

- each nonroot and nonleaf node holds k – 1 data values, and k pointers to subtrees,
where

  mkm 2/

- each leaf node holds k – 1 data values, where   mkm 2/

- all leaves are on the same level

- the data values in each node are in ascending order

- for all i, the data values in the first i children are less than the i-th data value

- for all i, the data values in the last m – i children are larger than the i-th data
value

So, a B-tree is generally at least half full, has a relatively small number of levels, and is
perfectly balanced. Typically, m will be fairly large.

B Trees

Data Structures & Algorithms

5

CS@VT ©2000-2009 McQuain

B Tree Example

Since a binary search may be applied to the data values in each node, searching is highly
efficient.

A B-tree of order 5:

CBA FE KJIH NM RQP VUT ZYX

L

GD WSO

B Trees

Data Structures & Algorithms

6

CS@VT ©2000-2009 McQuain

B Tree Insertion

Insertion follows similar logic to the BST, with the complications that we must search the
list of values in each node, and make nodes obey the more complex restriction

  mkm 2/

where k is the number of children the node has.

The basic idea is the same: search for the appropriate leaf, add the new value, then split
and promote as necessary.

DA HGF POM VTS

QKE
For instance, inserting the values W
and then X into the B tree at right
would cause the right-most leaf to
split and the value V to be promoted
to the root.

Then, inserting the value Z would
cause the root to split, and the value
Q to be promoted to a new root
node.

B Trees

Data Structures & Algorithms

7

CS@VT ©2000-2009 McQuain

Insertion Example I

DA HGF POM WVTS

QKE

DA HGF POM TS

VQKE

XW

Inserting W just fills the leaf.

Inserting X causes the leaf to
overflow. So, we split the leaf
and promote the median value,
which is V, up one level.

The node there had room for the
new value, so no further
splitting occurs.

B Trees

Data Structures & Algorithms

8

CS@VT ©2000-2009 McQuain

Insertion Example II

DA HGF POM TS

VQKE

XW

Inserting I just fills the second leaf.

Then, inserting J causes the leaf to overflow. So, we split the leaf and promote the median
value, which is H, up one level.

Now, the parent is full, and so splitting proceeds…

DA IHGF POM TS

VQKE

XW

B Trees

Data Structures & Algorithms

9

CS@VT ©2000-2009 McQuain

Insertion Example III
Splitting the root sends K up:

DA GF POM TS

HE

XWJI

VQ

K

So, the B-tree grows by pushing up a new root, which keeps all leaves at the same level.

As you can see here, the root must be an exception to the requirement that each node
contains a minimum number of data values, since root-splitting will naturally lead to a new
root node holding only one value.

B Trees

Data Structures & Algorithms

10

CS@VT ©2000-2009 McQuainComputer Science Dept Va Tech August 2006 ©2006 McQuain

B Tree Insertion Algorithm
InsertHelper(Val, sRoot, upVal, upChild, splitHappened) {

NULL test, on general principles

if at leaf {
if NOTFULL {

insert Val
splitHappened = false

}
else {

split off new right sibling for sRoot
set upVal to middle value from splitting
set upChild to new right sibling
splitHappened = true

}
return

}

find index Idx of child to descend
InsertHelper(Val, ptr[Idx], upVal, upChild, splitHappened)
. . .

Note: this started as an implementation in
C++; adapt to the language of your choice…

B Trees

Data Structures & Algorithms

11

CS@VT ©2000-2009 McQuainComputer Science Dept Va Tech August 2006 ©2006 McQuain

B Tree Insertion Algorithm
. . .
if (splitHappened) {

if NOTFULL {
insert upVal and upChild to sRoot
splitHappened = false

}
else {

split off new right sibling for sRoot
set upVal to middle value from splitting
set upChild to new right sibling
splitHappened = true

}
}
return

}

B Trees

Data Structures & Algorithms

12

CS@VT ©2000-2009 McQuain

If we let then we can derive an upper bound on the height of the B-tree storing n
key values:

Search Cost

 2/mq 

1
2

1log 





 


nh q

This is very small. For example, if m = 200 and n = 2,000,000 then h <= 4.

But don’t get too excited by this. The cost of doing a binary search of the data values in a
node would be at least log2(q), and if we do that at each level in the tree, the total cost
would be

 1 1log() log log log
2 2q

n nq n                  
      

Keep in mind that the motivation is to find a tree structure that can be efficiently stored to
disk, and matching the search cost of a perfectly balanced binary tree is a plus.

B Trees

Data Structures & Algorithms

13

CS@VT ©2000-2009 McQuain

It would seem that the primary concern about the cost of insertion would be the number of
splits that must be performed (everything else is essentially analogous to BST insertion).

It is possible to show that as n increases, the average probability of a split is approximated
by

Cost of Splitting

  12/
1

m

So, for example, if m = 100 then the probability of a split is about 2%. That shouldn’t be
surprising.

Splitting a node is fairly expensive since about half the data values in the node must be
moved to a new location, but for typical B-trees it won’t be required all that often.

B Trees

Data Structures & Algorithms

14

CS@VT ©2000-2009 McQuain

Deletion of a value from a node has an interesting consequence, since the number of
children is related to the number of values in the node.

For a leaf node, deleting a value may drop the number of data values in the node below the
mandatory floor. If that happens, the leaf must borrow a value from an adjacent sibling
node if one has a value to spare, or be merged with an adjacent sibling node. But the latter
will decrease the number of children the parent node has, and so a value must be moved
from the parent node into the merged leaf.

Consider deleting T from the B-tree of order 5 below:

B Tree Deletion

DA HGF OM TS

VQKE

XW

B Trees

Data Structures & Algorithms

15

CS@VT ©2000-2009 McQuain

Removing T from the leaf causes it to "underflow".

Deletion from a Leaf (one case)

DA HGF OM S

VQKE

XW

Neither sibling node has a value to spare. So we must merge with a sibling:

XWVS

OM S

VQKE

XW OM XWVS

QKE

B Trees

Data Structures & Algorithms

16

CS@VT ©2000-2009 McQuain

Deleting a value from an internal node is accomplished by reducing it to the former case.

Denote the value to be deleted by VK.

The immediate predecessor of VK, which must be in a leaf node, is borrowed to replace the
value that is being deleted, and then deleted from the leaf node.

Consider deleting K from the following B-tree of order 5:

Deletion from an Internal Node

DA HGF OM TS

VQKE

XW

B Trees

Data Structures & Algorithms

17

CS@VT ©2000-2009 McQuain

H

The immediate predecessor of K is the largest value in the right-most leaf below the child
that lies to the left of K:

Deletion from an Internal Node

DA HGF OM TS

VQKE

XW

The immediate predecessor is copied to replace the value being deleted and then removed
from the leaf (trivial case this time):

DA HGF OM TS

VQKE

XW

B Trees

Data Structures & Algorithms

18

CS@VT ©2000-2009 McQuainComputer Science Dept Va Tech August 2006 ©2006 McQuain

B Tree Deletion Algorithm
DeleteHelper(Val, sRoot, underflowHappened) {

NULL test, on general principles

search sRoot for Val or closest predecessor
if Val does not occur in sRoot {

DeleteHelper(Val, appropriate child, underflowHappened)
if success and underflowHappened {

if can borrow {
borrow value from appropriate child

}
else {

merge appropriate children
adjust sRoot to account for merge
set underflowHappened

}
}
return

}
else if sRoot is a leaf {

delete Val from sRoot
set underflowHappened
return

}
. . . Note: this started as an implementation in

C++; adapt to the language of your choice…

B Trees

Data Structures & Algorithms

19

CS@VT ©2000-2009 McQuainComputer Science Dept Va Tech August 2006 ©2006 McQuain

B Tree Deletion Algorithm
. . .
else {

replace Val in sRoot with closest predecessor
DeleteHelpher(closest predecessor, left subtree from Val,

underflowHappened)
if success and underflowHappened {

if can borrow {
borrow value from appropriate child

}
else {

merge appropriate children
adjust sRoot to account for merge
set underflowHappened

}
}
return

}
return

}

B Trees

Data Structures & Algorithms

20

CS@VT ©2000-2009 McQuain

B Tree Storage Efficiency
In a B tree:

- nodes are guaranteed to be (essentially) at least 50% full

- node could also be only 50% full, wasting half the data space in the nodes

- but that "wasted" space is available to service future insertions

- analysis and simulation indicates that in typical use a B tree will be about 70% full

This expectation of wasted space is a motivation for some variants of the basic B tree.

B Trees

Data Structures & Algorithms

21

CS@VT ©2000-2009 McQuain

B* Trees
In B* trees:

- all nodes except the root are required to be at least 2/3 full rather than 1/2 full

- splitting transforms 2 nodes into 3, rather than 1 node into 2

- analysis indicates the average utilization of a B* tree will be about 81%

- can be generalized to specify a fill factor of (n+1)/(n+2); a Bn tree

Knuth

B Trees

Data Structures & Algorithms

22

CS@VT ©2000-2009 McQuain

B+ Trees
In B+ trees:

- Internal nodes store only key values and pointers*.

- All records, or pointers to records, are stored in leaves.

- Commonly, the leaves are simply the logical blocks of a database file index,
storing key values and offsets. In this case, many key values will occur twice in
the tree, once at an internal node to guide searching, and again in a leaf.

- If the leaves are simply an index, it is common to implement the leaf level as a
linked list of B tree nodes… why?

The B+ tree is the most commonly implemented variant of the B-tree family, and the
structure of choice for large databases.

* In small databases, it is fairly common to use a B-tree
as a direct data structure, with nodes storing records.

B Trees

Data Structures & Algorithms

23

CS@VT ©2000-2009 McQuainComputer Science Dept Va Tech August 2006 ©2006 McQuain

B Tree Implementation

template <typename T> class BTreeT {
public:

BTreeT(unsigned int Order = 3);
~BTreeT();

// some public fns not shown
bool Insert(const T& Val);
bool Delete(const T& Val);
void Display(ostream& Out) const;
T* const Find(const T& Target);
const T* const Find(const T& Target) const;

private:
unsigned int Order;
BNodeT<T>* Root;
// some helper fns not shown

};

A sample B tree template interface is shown below:

The order could be supplied as a non-type template parameter, rather than via the
constructor, but you could not then use a local variable when declaring a B tree, so the
approach shown here is more flexible from the client perspective.

B Trees

Data Structures & Algorithms

24

CS@VT ©2000-2009 McQuain

B Tree Node Implementation
The design of the B tree node type raises some interesting issues:

- the node must provide a way to store Order - 1 data values

- the node must provide a way to store Order pointers

- the node must support binary search of the data values, so dynamically-allocated
arrays are appropriate

- the node should, perhaps, provide the necessary search function, and functions to
remove and add data values (and adjust the pointer array as needed)

- the node destructor must destroy the arrays

- the node should provide an isFull() function, and perhaps other tests such as
underflow, or whether the node has “extra” values that could be “borrowed”

- the split and merge operations needed for the B tree implementation could be made
the responsibility of the node

Since leaf nodes do not need pointers, there is a case for having two distinct node types.
While that would save memory (or disk space), the idea will not be pursued here.

B Trees

Data Structures & Algorithms

25

CS@VT ©2000-2009 McQuainComputer Science Dept Va Tech August 2006 ©2006 McQuain

B Tree Node Implementation

template <typename T> class Pair {
public:

T Data;
BNodeT<T>* Right;
// some members perhaps not shown

};

The most common approach seems to be to use one array, of dimension Order – 1, to
store the data values, and another, of dimension Order, to store the pointers.

It is possible to simplify the shifting needed when inserting and removing data values by
coalescing the two arrays into one, storing data/pointer pairs. For example:

The node could then store an array of Pair objects, of dimension Order, using the 0-th
cell to store only a pointer (to the left-most child).

This approach also simplifies some communication issues when splitting a node.

On the other hand, this approach also adds some syntactic complexity.

B Trees

Data Structures & Algorithms

26

CS@VT ©2000-2009 McQuain

B Tree Node on Disk
Of course, the point is that we will store the nodes persistently on disk.

So, how will we lay out the node in a file?

- write alternating pointer (offset) and data values?

- write the key values as a block and the pointers as a block?

- what other values are necessary?

There are a number of options… it will be up to you to pick one.

And, of course, the nature of the data values must be taken into account.

- fixed-length simple data values?

- variable-length or otherwise complex data values

- text format or binary format?

