
Searching

Data Structures & Algorithms

1

CS@VT ©2000-2009 McQuain

The Search Problem
Suppose we have a collection of records, say R1, R2, …, RN, each of which contains a
unique key value, say ki.

Given a particular key value, K, the search problem is to locate the record Ri such that ki
equals K (or to determine that no such record exists in the collection).

A successful search in one in which a matching record is located; an unsuccessful search is
one in which no such record is found (or exists within the collection).

An exact match search is a search for the record that matches s specified key value; a range
search is a search for all records whose key values fall within a specified set of key values.

Searching

Data Structures & Algorithms

2

CS@VT ©2000-2009 McQuain

Linear Search
In a linear search, the records are typically stored in a linear structure such as an array or a
list, and the records are examined one-by-one in sequential order until a match is found or
the last record has been examined and rejected.

It should be immediately obvious that the best case is that we will examine one record (and
hence do one comparison of key values).

It should also be immediately obvious that the worst case is that we will examine all N
records, performing N comparisons of key values, and find a match in the final comparison
or find there is no match.

If we assume that each record is equally likely to match the specified key value, then it is
probably intuitively obvious that the average case will involve going about half-way
through the collection, and hence doing about N/2 comparisons of key values.

Searching

Data Structures & Algorithms

3

CS@VT ©2000-2009 McQuain

Binary Search
In a binary search, the records are typically stored in sorted order in a linear structure such
as an array or a list, and the records are examined according to the following scheme:

0 set the active list to be the entire list

1 calculate the index of the middle-most element in the active list

2 compare the middle-most element to the target key value

3 if it’s a match, stop

4 if the target key value is less than the key for the middle-most element, reset the active
list to be the lower half of the current active list

5 otherwise, reset the active list to be the top half of the current active list

6 goto step 1

Searching

Data Structures & Algorithms

4

CS@VT ©2000-2009 McQuain

Binary Search Cost
For a rough analysis of the cost of binary search, note that each comparison that does not
result a match does eliminate about half of the remaining elements.

So, if we start with N elements in the list, we can say:

After comparison # approx # elements NOT eliminated

--

1 N/2

2 N/4

3 N/8

.

log2N 1

So, in the worst case, it appears that a binary search will require about 1 + log2N
comparisons of key values.

Searching

Data Structures & Algorithms

5

CS@VT ©2000-2009 McQuain

Lower Bound on Cost of Searching
So, the question seems to be, can we state a lower bound on the number of comparisons of
key values that any possible search algorithm would require (say, in its worst case)?

Assume that we have a search algorithm that operates simply by comparing key values.

We can model the search process by using a binary tree, in which each node represents the
result of comparing two key values:

ki ? K

<

>

If the comparison results in equality, then the
search terminates, so we don’t need an edge to
model that.

Searching

Data Structures & Algorithms

6

CS@VT ©2000-2009 McQuain

Decision Tree Model of Searching
Consider binary search on a collection of 5 records:

So how does this help?

k3 ? K

>

<

k1 ? K

>

<

k4 ? K

>

<

!match

k2 ? K

!=
!match

!match

k5 ? K

!=
!match

Searching

Data Structures & Algorithms

7

CS@VT ©2000-2009 McQuain

Decision Tree Analysis
The decision tree must contain 1 node for each possible conclusion of the search.

For a successful search, that requires N nodes.

For an unsuccessful search, that requires some additional nodes to represent the various
ways in which failure may be detected. Without being too precise, say this is no more than
N + 1 additional nodes.

Then:

For a successful search, the decision tree must have at least log (N + 1) levels.

So the worst case search would require log (N + 1) key comparisons.

For an unsuccessful search, the decision tree must have at least 1 + log (N + 1) levels, so
the worst case search would require log (N + 1) key comparisons.

So, to simplify, any search algorithm that operates strictly on key comparisons must require
about log N key comparisons in its worst case.

Searching

Data Structures & Algorithms

8

CS@VT ©2000-2009 McQuain

Conclusions
We have two goals then:

First, we want the ability to achieve the theoretical minimum search cost with a flexible
data structure --- and an array or other linear structure does not seem to qualify.

Second, we would like to have a way to beat the theoretical minimum cost… so we would
like to know if there are ways to search that do not depend purely on key comparisons.

