
CS 3114 Data Structures and Algorithms Homework 4: Hashing

 1

Prepare your answers to the following questions in a plain text file. Submit your file to the Curator system by the posted
deadline for this assignment. No late submissions will be accepted.

One way to compare the performance of several hash functions is to simulate the addition of a fixed collection of records to
a hash table, using each hash function, and counting the number of hits each slot in the table receives. From that
information, we can construct a histogram showing how many slots received one hit, how many received two hits, and so
forth. We can also calculate the average number of steps that a search would take.

For instance, given a collection of 1000 words and a hash function that computes a nonnegative integer from a string, we
might use a table size of 2000 and discover that:

of hits # of slots receiving that # of hits
0 1042
1 932
2 15
3 7
4 3
5 1

Assume that each slot in the hash table uses a linked list to hold the elements that collide in that slot. From that
information, we would then calculate that the average number of steps in a search would be about 1.064, since the
histogram above implies that:

 958 words would require 1 step (932 + 15 + 7 + 3 + 1)
 26 words would require 2 steps
 11 words would require 3 steps
 4 words would require 4 steps
 1 words would require 5 steps

Three files of strings are provided on the course website:

WordData.txt 111,444 English words (somewhat loosely)
D2.txt 30,573 medium-length strings describing proteins
SQ2.txt 26,381 (mostly) long strings representing amino acid sequences

Your task is to compare the performance of four different hash functions on the latter two files:

sum() simply sums the ASCII codes of the characters in the string
elfhash() classic elfhash function employing complex folding
sfold() string hasher employing simple folding
sbdm() string hasher employing more complex folding

Java code for each of the four functions is provided in the course notes or on the course website. You will implement
driver code to apply each of the hash functions to all of the strings in each of the latter two files and compute the results
needed to complete the table given below. The results for the first file are included below to help you validate your logic.

In accordance with common guidelines for achieving good performance, you will use a table size equal to twice the
number of strings being hashed into it.

You should not that it is NOT necessary to implement a fully-functional hash table in order to solve this assignment. In
fact, it may be counter-productive to do so. You may, and should, take advantage of the standard library.

CS 3114 Data Structures and Algorithms Homework 4: Hashing

 2

Hash Function WordData.txt D2.txt SQ2.txt
 111444 strings 30573 strings 26381 strings
--
sum
 avg # steps 90.494
 worst case 373
 % < log N 17.7%
--
elf
 avg # steps 1.321
 worst case 6
 % < log N 100.0%
--
sfold
 avg # steps 1.257
 worst case 6
 % < log N 100.0%
--
sbdm
 avg # steps 1.251
 worst case 6
 % < log N 100.0%
--

The average number of steps is computed in the manner described in the example given on the previous page.

The worst case it the maximum number of steps that would be needed to find a word; it would be 5 for the example.

The last value (% < log N) is the percentage of the given strings that would be found in fewer than log N steps, where N is
the number of strings that were hashed.

