CS 3114 Data Structures & Algorithms

You will submit your solution to this assignment to the Curator System (as HW1). Your solution must be either a plain text file (e.g., NotePad) or a MS Word document; submissions in other formats will not be graded.

Partial credit will only be given if you show relevant work.

1. [20 points] Using any relevant theorems from the notes, conjecture a simple function g such that f is $\Theta(g)$, and prove that your conjecture is correct if:

$$f(n) = n^2 \log n + n^3 + 1000$$

2. [20 points] Let α be an arbitrary positive constant, and define two functions:

$$f(n) = \log n$$
 and $g(n) = n^{\alpha}$

Using any theorems from the notes, prove that f is O(g) but f is not $\Theta(g)$.

3. [20 points] Suppose that f and g are non-negative functions such that f is $\Theta(g)$. Is it necessarily true that:

$$2^{f(n)}$$
 is $\Theta(2^{g(n)})$

If so, prove it. (You may assume that the limit referred to in Theorem 8 exists.) If no, give a specific counter-example and show that it is a counter-example.

4. [20 pts] Assume a system uses a hard drive with the following physical characteristics:

total capacity	128 GB
# of platters	8
# of tracks per surface	16384
# of sectors per track	2048
cluster size	4 KB
spindle speed	10000 RPM
head start time	1 ms
track to track seek time	0.01 ms

In answering the following questions, express all final time values to the nearest hundredth of a millisecond (8.33 ms).

- a) What is the average random head seek time for this drive?
- b) What is the average rotational latency for this drive?
- c) What is the average total time required to read one randomly-chosen sector from this drive?
- d) What is the average total time required to read a file of 10 MB from this drive if the clusters are randomly scattered on the drive?

- 5. [20 points] Consider solving a problem using an algorithm whose complexity is $\Theta(N^2)$. Estimate the running time of the algorithm if:
 - a) $N = 2^{12}$ (4096) and the hardware is capable of executing 2^{24} instructions per second.
 - b) $N = 2^{16}$ (65536) and the hardware is capable of executing 2^{24} instructions per second.

Express your answers in days, hours, minutes and seconds. (Not in total seconds unless the time is shorter than 1 minute.)