Positional Notation Numeric Bases 1

A positional or place-value notation is a numeral system in which each position is related
to the next by a constant multiplier, called the base or radix of that numeral system.

The value of each digit position is the value of its digit, multiplied by a power of the base;
the power is determined by the digit's position.

The value of a positional number is the total of the values of its positions.

So, in positional base-10 notation:

73901 =7x10* +3x10° +9x10% +0x10" +1x10°

And, in positional base-2 notation:

10010000010101101=1x 2" +1x 28 +1x 2" +1x2° +1x 23 +1x 2% +1x 2°

Why is the second example a cheat?

CS@VT Computer Organization | ©2005-2019 McQuain

Vital Point Numeric Bases 2

Do not confuse the representation with the number!

Each of the following examples is a representation of the same number:

255,
11111111,

FF
e 2010,

377, 3333,
100110,

Do not make the mistake of thinking that there is such a thing as "a base-10 number" or "a
base-16 number".

There is a unigue base-10 representation of every integer and there is a unique base-16
representation of every integer.

CS@VT Computer Organization | ©2005-2019 McQuain

B Converting from base-10 to base-2 Numeric Bases 3

Given a base-10 representation of an integer value, the base-2 representation can be
calculated by successive divisions by 2:

73901 Remainder

36950 1
18475 \\
9237
4618
2309
1154
577
288
144
72

36
18

> 10010000010101101,

_ O O r O O O O O Bk O O Fr Kk O

[R =\ T o)

CS@VT Computer Organization | ©2005-2019 McQuain

Converting from base-2 to base-10 Numeric Bases 4

Given a base-2 representation of an integer value, the base-10 representation can be
calculated by simply expanding the positional representation:

10010000010101101, =1" 2°°+1" 2°+1" 2" +1" 2°+1" 2°+1" 2°+1" 2°
=65536+8192+128+32+8+4+1

=73901

CS@VT Computer Organization | ©2005-2019 McQuain

. Other Bases Numeric Bases 5

Are analagous... given a base-10 representation of an integer value, the base-16
representation can be calculated by successive divisions by 16:

73901 Remainder
4618 13 =-> D BN
288 10 --=> A
18 0 ~ 120AD,
2
1 _

The choice of base determines the set of numerals that will be used.

base-16 (hexadecimal or simply hex)
numerals: 01 ... 9ABCDEF

CS@VT Computer Organization | ©2005-2019 McQuain

Converting from base-2 to base-16 Numeric Bases 6

Given a base-2 representation of an integer value, the base-16 representation can be
calculated by simply converting the nybbles:

1 0010 0000 1010 1101
1 2 0 A D : hex

The same basic "trick" works whenever the target base is a power of the source base:

10 010 000 010 101 101
2 2 0O 2 5 5 : octal

CS@VT Computer Organization | ©2005-2019 McQuain

B Important Bases in Computing

base-2

base-8

base-10

base-16

CS@VT

binary

octal

decimal

hex

01

01234567

0123456789

0123456789ABCDETF

Computer Organization |

Numeric Bases 7

©2005-2019 McQuain

™ Bits and Bytes Numeric Bases 8

A binary digit or bit has a value of either 0 or 1; these are the values we can store in
hardware devices.

A\
- - < S AN
A byte is a sequence of 8 bits. QY
i]) 0 O | 0000
A byte is also the fundamental unit of storage in memory. 1 11 | 0001
2 | 2 | 0010
3 (3 (0011
. - 4 | 4 | 0100
A nybble is a sequence of 4 bits (half of a byte). 515 10101
6 | 6 | 0110
7 7 0111
Consider the table at right: 8 [8 | 1000
9 19 |1001
A |10 | 1010
B |11 1011
C (12| 1100
D |13 (1101
E |14 1110
F |15 1111

CS@VT Computer Organization | ©2005-2019 McQuain

Impact of Hardware Limitations Numeric Bases 9

Any storage system will have only a finite number of storage devices.

Whatever scheme we use to represent integer values, we can only allocate a finite number
of storage devices to the task.

Put differently, we can only represent a (small) finite number of bits for any integer value.

This means that computations, even those involving only integers, are inherently different
on a computer than in mathematics.

CS@VT Computer Organization | ©2005-2019 McQuain

Example: 32-bit Integers Numeric Bases 10

As an example, suppose that we decide to provide support for integer values represented
by 32 bits.

There are 232 or precisely 4,294,967,296 different patterns of 32 bits.
So we can only represent that many different integer values.

Which integer values we actually represent will depend on how we interpret the 32 bits:

1 bit for sign, 31 for magnitude (abs wvalue): -2147483647 to +2147483647
32 bits for magnitude (no negatives) : 0 to +4294967295
2's complement representation: -2147483648 to +2147483647

CS@VT Computer Organization | ©2005-2019 McQuain

Integer Data Types Numeric Bases 11

datatype acollection of values together with the definitions of a number of operations
that can be performed on those values

We need to provide support for a variety of data types.

For integer values, we need to provide a variety of types that allow the user to choose based
upon memory considerations and range of representation.

For contemporary programming languages, we would expect:
- signed integers and unsigned integers
- 8-, 16-, 32- and (perhaps) 64-bit representations
- the common arithmetic operations (addition, subtraction, multiplication, division, etc.)
- sensible handling of issues related to limited ranges of representation
- sensible handling of computational errors resulting from abuse of operations

CS@VT Computer Organization | ©2005-2019 McQuain

Unsigned Integers: Pure Base-2 Numeric Bases 12

We store the number in base-2, using a total of n bits to represent its value.

Common values for n include 8, 16, 32 and 64, although any positive number of bits would
work.

The range of represented values will extend from 0 to 2*n — 1.

CS@VT Computer Organization | ©2005-2019 McQuain

Signed Integers: 2's Complement Form Numeric Bases 13
For non-negative integers, represent the value in base-2, using up to n — 1 bits, and pad to n
bits with leading 0's:

42 : 101010 --> 0010 1010

For negative integers, take the base-2 representation of the value (ignoring the sign) pad
with O's to n — 1 bits, invert the bits and add 1.:

—42: 101010 --> 0010 1010
--> 1101 0101
--> 1101 0110

Weird! What's the point? Well, we've represented -42 in such a way that if we use the
usual add/carry algorithm we'll find that 42 + -42 yields O (obviously desirable):

42 0010 1010
-42: 1101 0110
sum: 0000 0000 (ignore carry-out)

CS@VT Computer Organization | ©2005-2019 McQuain

M 2's Complement Observations Numeric Bases 14

Here's another way to understand why this makes sense...

Let's suppose we have 16-bit signed integers. Now it's natural to represent 0 and 1 as:

0: 0000 0000 0000 0000
1: 0000 0000 0000 0001

Now, how would you represent -1? You want 1 + -1 to equal 0, so...

s

1: 0000 0000 0000 0001 1+7?==

-1: PP 2727 272727 27277 /
___________________ ? must be 1

O: 0000 0000 0000 0000 carry ==

So, we'd want to represent -1 as:
-1: 1111 1111 1111 1111

CS@VT Computer Organization | ©2005-2019 McQuain

2's Complement Observations

To negate an integer, with one exception*, just invert the bits and add 1.

25985: 0110 0101 1000 0001
-25985: 1001 1010 0111 1111

--25985: 0110 0101 1000 0001

The sign of the integer is indicated by the leading bit.

There is only one representation of the value 0.

The range of representation is asymmetrical about zero:
.. 2n—1
minimum —

. 1
maximum 2" 1

CS@VT Computer Organization |

Numeric Bases 15

* QTP

©2005-2019 McQuain

M 2's Complement Shortcut Numeric Bases 16

To negate an integer, with one exception, find the right-most bit that equals 1 and then
invert all of the bits to its left:

3328: 0000 1101 0000 0000

<€
-3328: 1111 0011 0000 00QO

Why does this work?

CS@VT Computer Organization | ©2005-2019 McQuain

2's Complement to base-10 Numeric Bases 17

If the integer Is non-negative, just expand the positional representation:

0000 1101 0000 00QO

2711 + 2710 + 278
= 3328

If the integer is negative, take its negation (in 2's complement), expand the positional
representation for that, and then take the negation of the result (in base-10).

CS@VT Computer Organization | ©2005-2019 McQuain

™ base-10t0 2's Complement Numeric Bases 18

Obvious method:
- apply the division-by-2 algorithm discussed earlier to the magnitude of the number

- if value is negative, negate the result

CS@VT Computer Organization | ©2005-2019 McQuain

W base-10 to 2's Complement

Alternate method:

find the largest power of 2 that's less than the magnitude of the number

subtract it from the magnitude of the number and set that bit-position to 1

repeat until the magnitude equals O

If value is negative, negate the result

5 6 10 11 12
2 4 8 1o 32 o4 > /¢ 1024 2048 4096
3328:
1280:
256:
0!
CS@VT Computer Organization |

Numeric Bases 19

set bit

11

10

©2005-2019 McQuain

Examples: Basic Addition, Unsigned

Numeric Bases 20

“An integer overflow occurs when an arithmetic operation attempts to create a numeric
value that is too large to be represented within the available storage space [Wikipedia]”.

When addition is successful on an unsigned number:

Carry: 0101 010
42 0010 1010
42 0010 1010
sum: 0101 0100 (no carry-out)

When overflow occurs on an unsigned number:

Carry: 11111 111

255: 1111 1111
1: 0000 0001
sum: 0000 0000 (carry out is one, overflow)

CS@VT Computer Organization |

©2005-2019 McQuain

I Examples: Basic Addition, Signed Numeric Bases 21

When overflow occurs on a signed number:

Carry: 11111 110

42 0010 1010
-42: 1101 0110
sum: 0000 0000 (ignore carry-out)

When overflow occurs on a signed number:
Carry: 10000 000

-128: 1000 0000
-1 1111 1111
sum: 0111 1111 (positive number, overflow)

CS@VT Computer Organization | ©2005-2019 McQuain

Examples: Unsigned vs. Signed Numeric Bases 22
Be careful mixing signed and unsigned numbers, the results may surprise you:

int32 t x = -1;
uint32 t y = -1;

printf ("print x as a signed number: $d\n", x);
printf ("print x as an unsigned number: %u\n", Xx);

printf ("print y as a signed number: %d\n", vy);
printf ("print y as an unsigned number: Su\n", vy);

What does this print?

print x as a signed number: -1
print x as an unsigned number: 4294967295
print y as a signed number: -1

print y as an unsigned number: 4294967295

Key point: bits are the same for x and v, difference is how we interpret them. x == vy will
evaluate to true.

CS@VT Computer Organization | ©2005-2019 McQuain

Examples: Unsigned vs. Signed Numeric Bases 23

Be careful mixing signed and unsigned numbers, the results may surprise you:

int32 t x = -1;
uint32 t y = 1;

if ((x < vy)

printf ("x is less than y.\n");
else

printf ("x is greater than y.\n");

What does this print?

X 1s greater than y.

Key point: when comparing signed and unsigned numbers, the signed numbers are
converted to unsigned. It’s best to explicitly cast to the type you want.

See more: http://stackoverflow.com/questions/5416414/signed-unsigned-comparisons

CS@VT Computer Organization | ©2005-2019 McQuain

o Examples: Most Negative Number Numeric Bases 24
You can actually perform the 2’s complement operation in your code:
int32 t w = 533;

// Invert (~) w and add 1
w = ~w + 1;
printf ("print w: %d\n", w);

What does this print?

print w: -533.

What about this code?

int32 t z = 1 << 31;

// This should negate it right?
z = ~z + 1;

// No! most negative number, -2147483648
printf ("print z after the conversion: %d\n", z);

CS@VT Computer Organization | ©2005-2019 McQuain

ASCI| Numeric Bases 25

The American Standard Code for Information Interchange maps a set of 128 characters into
the set of integers from 0 to 127, requiring 7 bits for each numeric code:

| "#4%E" () *+,-./
0123456789: ;<=>7?

95 of the characters are "printable" and are mapped into the
codes 32 to 126:

@ABCDEFGHIJKLMNO
_ _ PQRSTUVWXYZ[\]"
The remainder are special control codes (e.g., WRU, RU, tab, ‘abcdefghijklmno

Since the fundamental unit of data storage was quickly standardized as an 8-bit byte, the
high bit was generally either set to 0 or used as a parity-check bit.

CS@VT Computer Organization | ©2005-2019 McQuain

Some ASCII Features Numeric Bases 26

The decimal digits '0" through '9' are assigned sequential codes.

Therefore, the numeric value of a digit can be obtained by subtraction: '7' —'0'=7

The upper-case characters 'A' through 'Z' are also assigned sequential codes, as are the
lower-case characters 'a' through 'z'.

This aids in sorting of character strings, but note that upper-case characters have lower-
valued codes than do upper-case characters.

. : VI#$%&" () *+, -/
There are no new operations, but since ASCII codes are 0123456789: ; <=>7

numeric values, it is often possible to perform arithmetic on @ABCDEFGHIJKLMNO

them to achieve useful results... PQRSTUVWXYZ[\]1"
"abcdefghijklmno
pgrstuvwxyz{|}~

CS@VT Computer Organization | ©2005-2019 McQuain

M ASCII Table

Numeric Bases 27

It's easy to find ASCII tables online (including some that are clearer than this one):

0
0
1
2 SP
3 0
4 Q@
5 P
c -
T p

CS@VT

1

|

QO 9 0O P - o

2

"

HE O 90 W N

3

#

n Q n OO w

4

+ Q =3 O & W

5 6 7 8 9

NUL SOH STX ETX EOT ENQ ACK BEL BS HT
DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM

o\°

)

9
I
Y
1
Y

C 0O C ME o
< Hh < H o
T Q = 0 J
X DX I 0~

Computer Organization |

A B C
LF VT FF
SUB ESC FS

* + ,

. ; <

J K L

Z [\

3 k1

Z { |

D E F
CR SO SI
GS RS US

. /

= > 2

M N O

L

m n O

} ~ DEL

©2005-2019 McQuain

Extended ASCII Numeric Bases 28

For good or ill, the ASCII codes are 7-bit codes, and that leads to temptation.

There exist 8-bit character encodings that extend the ASCII codes to provide for 256
different characters (e.g., ISO_8859-1:1987).

Unfortunately, none of these has achieved the status of a practical Standard in use.

CS@VT Computer Organization | ©2005-2019 McQuain

. ASCII Art Numeric Bases 29

_'& L
/ \
O O ’
((_)
\ /
/‘vvvvvv‘\
/ ;o\
AVAVAVANER
(1/N/\N/_)

CS@VT Computer Organization | ©2005-2019 McQuain

2 Just for fun...

CS@VT

Numeric Bases

:7568@b8#8D6ti;,
rDRRRRRRRRRRRRERERERRRRRRLSK; rF.
;bRREREB6MEEaUamXmXmXmmD#RRRRRRR67
7RRQR#kXEZmaPZEXPEXUXmPEEXZamZkHPk@@@Dr
,ME@sURRR6ZXEMXPEEEMXmME PmmXmE PEPXmXkmPUZUm#@RQ#r
r@@RERREQEkXaEEPEMXPmMPEMEMEPMPEMEMEPXmMEPXXUaaZX6b@@D;
Y@QRR#EZKEXZEEPEPXPMPEPMMEPEPEPEPMPEPEPEPP#8Qb#kmmmUH@R# ;
r@@E@DmmZXXPmmEKEPEPEPEMXmXPmPmMPEPEMEPEKEkaaE#b@REEKkUKEMk@R@ T
: #@@#6UMPEZPmkXXZPmkmmE PEPEMEKmPE KE PEPmmEPEP6PaEPD8bPEXmXPm@ER @,
F@@bakZEEMmPXmEPZmPkXmEPmPEPMPMPEkmPmkXEEmaEXEUXUaaSUEXPEPZPE6QRQr
7 QRRHZZUmmPXmmPXXEHEEZ 6mmmmmPEPEPEPMkmPmMPZZZk 6# PPkkXP6# H# H6mmXPm6@Q ;
tQ@Q@HmMaPXPEPMPEPXEP@ @ #XmmPEMMPEPMPmMPmPmPmmXPkb@RRRRRRER8QQE@DkXmmkmmUk@@T
kQ@Q@PXZPPmXHPkmPmma# @ # kHmmmPEmXmmkmPEPEPPPZE6Q@RRQ8; ;mRRRRHXZaXE66kaEU8@A
QREMZEEZmXPmkZmmEaH@ 8 ZmXkmPEPEPMPEMMPZEEMUmE@RRE@D; rS@bPmZEPKHEMZPPRQRP
X@RPaXEEkmPXEmmX6aX#@#XEmE6mPmPmPmPEPXPXEZ6R@RRE, ; @Q8ZEZEEPXPXE6RQT
SE@PaamPbRER8#XmXPMEE8RHZKkEmmkmkmPEPEkmaFk#@@QRU. . @@bPPEEPEmMmMPXkb@8
@R6FZXE6P6kHPPXkPMX6@8ZXmkZ PPPEPEMXmaEk8QR@Rk , . , @@8mkXkmmXPmEXDQ@ :
;@@kaPXmaZUXUZZZamUXHQ@#ZaHmXEmaEXZXPHRRRRRs s@eeeen, S@EHXXPmmZEmkZEm@@Z
@REXZPPPEZZXaUDPH#b#bb@D6kkED6b#@b8RRRRUTr .@eee3seeer r@RbHXXZMEPMPMPXERRQ
@REHUZPPERRHERBERERBERRRLBBE#KFE##88#@RCL: #@@E1 ;QE@S CEERREERDMEKEPEPEmMZ@QE;
FRR8mMZZFmRRRRRCCRR8#88b#@#mZ6EEZUZRD k@RERRrrX@EbHEERCRREERREHXMXPEEXERRES
@RER#XFaURR#;, .rFRRbbERERBEDEM6EMMbERR ; DERRRRRERRRERELDP6EPZEEMEMMPEMXQREL
T@RREREEr ;8REEBB8REHZEXXZkBBES 3@@8@88DHZMXXaXUaUEkKRRRRRRRRRREERS
X@eee; #@QRFa@R64#CRmMaZPZHCERRERRr TQRQRE#DmkZaUEXmZXFP#@RE8DXEUXX6HRRQREX;
k@# 7@R7 aR88RERbHbLBD#X6HLRREPLMRRR#EXZXUXEKEZFXmRRR8ai77v7i7YivvsF#QRER3
i@e. ,@QEVSRRRRRERDD66EE6#B8BEPKRRRE86EEPaZZMEEaXX#@RRHLrrsstst1sL1T1YY71URRES.
IS ;8QRRRELESYiYTrvYT75P@#XaPEMUEZEP6PPEMZ6bRRRKL7vTsLsLLvVYs5tYsvstL7URRRD.
EQ@; #@bSYr7iLs5s5s3LsTrSE#ZaPZXmmEPaUaP#@RR6S17TssCSZm6P#C@R@8DDDDS5L1r3RRR;
#@Qr .k@37Y7Y1ss5s5t1ssTLsr3RRXaXEaXPPP#RRRRkSY77LLtst3Ua316@RmtLstUUULVrFRRP
m@e@Ee@sk@P7ilta5LLLVTVLTvvlsk@@8Dkb8RRRRRB#Us77TSststt5ssT15#@XYris5tTILYLDRRr
;@RRHazZREtY1sLZ8RRRBB#bbRBRRECRRRRRERRB##CCLtLriT55555s3sts1vab8UirT5553t177C8@8.
3@R3Yr7CHTLs3YURR#a33SUFFFXZXC533LsLT7YiLT1Ls11L1LLLs1ssCPR657Ttt15stsLLF8RR3
s@#r7LTS8t1L1vP@kvY71XksiLlvTiYivYvYTT1vLYLTLLs1tsCSXP#bDEFsYiSttstvviLC8RR8AY
:@#rs3ss@Frt3vERF; 7533Ft1L3351tss1TYLLt3aZPmk6DD#b@8#mXSCLLvs3CLssLilSkbRE@#UmE@m
F@svtlv@DL1SL5@#r3tss5Ls3Ss5s1YL5XmDbRR86kUUFS3t1sTLvVYLLsstLTiYTs3k@RREDmZaakX
t@mrtTCE3v31L6CLTsC33tts3tsvtFH#8#kFFs1vlLLT1Ts15sssts1TLriiTL3X#8QRR#6ZZXmP6RZ
HQRZYra@Yltss@@RTs5s3tttsiY3##6FsivY1LssslslsstsslTYvYvYLsSU6bQRRRRRREGmazZmXkamHR@3
PRRa#EssClL@@iss51ttLYCPHL7rrY1ITTYY7iiTTi7vivvL1FZP6bRRRERRERRACRRMFMM6PPZDAY
.5@@XYt3tY6QRZrSSLTiL6RRDPEEFFSFCS3SSUaP6#D88RRAREAC#DHPBRR#tr; CACMPMOMkPXHRr
7@k7s5ssFRETr1YLa@R8bEERRERREAREERRLEECRREAREERRLLDEMXFXHERRRESsr7r3Q@#kPEZXmPUSR L
r@PY3tsT38RRFYFRRBEFZaZZPE6PHPPP6k6MPEEUZUaaEazk@RE@DUYrY1T3b@DPX6EZXMXERRY
@b7ststTZRER8RECEXEPXPEMXMZXZXZXUZUXUaUZZ6H#b@REDUVT77ssL7CRE#kZMPPZkXmXRRr
#@1i1s33Lvb8mmHmazkZEEMXEXXZXazZXXk6##QCRRR86U3Y1i7LLs1vvm@eDmXEXkmPEMXX@Qr
k@aYts3L73@DZUXmPXmZZamPH6##QRRERERB##kXCsYVIT7YL51L7LaR@R6EamXmEMEMXEZQRr
V@bTL553T1k@XXXmMEKH88RRERERBB6EUSSLiYTvivvls5sLTv7vTm@eR#mEZmmKEMXPEXEXQRr
DRa7Llst7Z@kPRRRRR##ZSLvYY777vvslsLsLsTTiYriY53ZDRRR6mUZamEPEPEPEZEECRRT
;@@sTTTYsS#@RR#PCL77rvvLLs1LTsvY7i7YivilsFzk#@RRREKEZXaEmMHPMEPEPEPXHXmbES
#@@maF68RUs777TYLItTLTT7171LstSa6688RQCRRRRBHZEXZXPEMEPMPMPEPEPEkMXaHRF
s@Q@@8Fsv7vslsTLYv7vsFaP68QRRERRCRELH#PkmPUaX 6mmXPEPEMXEXPEPPPMPM6ZUkRE
k@REL7TstYLY7715EDRRRRRRREE88#6mMEUUFaaEXkXXUEmkXmaEXmXPEMEMEMXEXkaZUPQE ;
@R6T715s1YYTFP8RRRRR8##kkXEaaaXUEZPEmZMEMEEEMEMXPMPEKEMXPPkXEZPUaZZF6#@@C
.@Q5; YSLTLTF#RQRRR8H6mmMaZaXaEXEXmXmEMEkmkXEXEaXXmXEXmZEXEZXaXUkPm66#QRRRRRH
:@RTisttrLZRRE#6ZEaXUZaPmPEMXmZmXEXmZXZEZmZPEmamXmmkmHH88RRERRRRACRRREXS, .
:@E@TYssT768C8DZZaEEEZMPkUZUXZXazUXamm6H# #8RCRRAECRECREECRACRRERE#EST, -
@R7L3ivs8RBEZXmEMZMXEUEEMMHD8RRCCRRRRECRRRRRECDbHSivYir; .
@RY7svsERRPXEXaZEm6HRRRRQRRCRRRRCE#aL7r;:; .
rRarsrt@@PFUP6RRRRREE88LZr; ; : .
@E7LtDRE#RERRERRA3; .
;@Frt5stPeRal;
3@TFQRE6Vr:
S@EEeD7
kQa
.

30

Computer Organization | ©2005-2019 McQuain

Boolean Logical Values Numeric Bases 31

We must represent two values, TRUE and FALSE, so a single bit suffices.
We will represent TRUE by 1 and FALSE by 0.

Thus, a sequence of bits can be viewed as a sequence of logical values.

Note: this is not the view typically taken in high-level languages!

CS@VT Computer Organization | ©2005-2019 McQuain

I Boolean Logical Operations

Numeric Bases 32

Given two Boolean logical values, there are a number of operations we can perform:

A NOT A A B A AND B A B A OR B A B A NAND B
0 1 0 O 0 0 O 0 0 O 1
1 0 0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0
A B A XOR B A B A NOR B A B A XNOR B
0 O 0 0 O 1 0 O 1
0 1 1 0 1 0 0 1 0
1 O 1 1 0 0 1 0 0
1 1 0 1 1 0 1 1 1
CS@VT Computer Organization | ©2005-2019 McQuain

