
CS 2505 Computer Organization I C05: Chained Records in Memory

You may work in pairs on this assignment! 1

C Programming Pointer Accesses to Memory and Bitwise Manipulation

This assignment consists of implementing a function that can be executed in two modes, controlled by a switch specified by
a parameter to the function:

enum _DataFormat {CLEAR, ENCRYPTED};
typedef enum _DataFormat DataFormat;

struct _WordRecord {
 uint16_t offset; // offset at which word record was found in memory
 char* word; // dynamically alloc'd C-string containing the "word"
};
typedef struct _WordRecord WordRecord;

/**
 * Untangle() parses a chain of records stored in the memory region pointed
 * to by pBuffer, and stores WordRecord objects representing the given data
 * into the array supplied by the caller.
 *
 * Pre: Fmt == CLEAR or ENCRYPTED
 * pBuffer points to a region of memory formatted as specified
 * wordList points to an empty array large enough to hold all the
 * WordRecord objects you'll need to create
 * Post: wordList[0:nWords-1] hold WordRecord objects, where nWords is
 * is the value returned by Untangle()
 * Returns: the number of "words" found in the supplied quotation.
 */
uint8_t Untangle(DataFormat Fmt, const uint8_t* pBuffer, WordRecord* const wordlist);

The function will access a scrambled quotation, stored in a memory region pointed to by pBuffer. The organization of the
memory region is described in detail below. The function will analyze that memory region, and reconstruct the quotation
by created a sequence of WordRecord objects and storing them in an array provided by the caller.

You will also implement a function that will deallocate all the dynamic content of such an array of WordRecord objects:

/**
 * Deallocates an array of WordRecord objects.
 *
 * Pre: wordList points to a dynamically-allocated array holding nWords
 * WordRecord objects
 * Post: all dynamic memory related to the array has been freed
 */
void clearWordRecords(WordRecord* const wordList, uint8_t nWords);

Part of your score on the assignment will depend on the correctness of this function, and your ability to deallocate any other
allocations your solution may perform. This will be determined by running your solution on Valgrind; your goal is to
achieve a Valgrind report showing no memory leaks or other memory-related errors:

==10833== Memcheck, a memory error detector
==10833== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.
==10833== Using Valgrind-3.10.0 and LibVEX; rerun with -h for copyright info
==10833== Command: ./driver -clear
==10833== Parent PID: 10832
==10833==
==10833== HEAP SUMMARY:
==10833== in use at exit: 0 bytes in 0 blocks
==10833== total heap usage: 230 allocs, 230 frees, 13,642 bytes allocated
==10833==
==10833== All heap blocks were freed -- no leaks are possible
==10833==
==10833== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 1 from 1)

CS 2505 Computer Organization I C05: Chained Records in Memory

You may work in pairs on this assignment! 2

Case 1 [80%] Untangling Clear Data Records in Memory

Here is a hexdump of a memory region containing a scrambled quotation:

 0 1 2 3 4 5 6 7 8 9 A B C D E F
--
00000000 34 00 0f 3a 00 69 6e 64 69 66 66 65 72 65 6e 63 |4..:.indifferenc|
00000010 65 05 3f 00 62 65 05 47 00 62 79 06 02 00 66 6f |e.?.be.G.by...fo|
00000020 72 0a 68 00 70 65 6e 61 6c 74 79 09 74 00 70 75 |r.h.penalty.t.pu|
00000030 62 6c 69 63 06 21 00 54 68 65 05 2b 00 74 6f 08 |blic.!.The.+.to.|
00000040 16 00 72 75 6c 65 64 07 4e 00 65 76 69 6c 07 55 |..ruled.N.evil.U|
00000050 00 6d 65 6e 2e 05 5a 00 2d 2d 08 00 00 50 6c 61 |.men..Z.--...Pla|
00000060 74 6f 06 83 00 6d 65 6e 07 62 00 67 6f 6f 64 05 |to...men.b.good.|
00000070 11 00 74 6f 0a 7e 00 61 66 66 61 69 72 73 05 6f |..to.~.affairs.o|
00000080 00 69 73 06 1b 00 70 61 79 |.is...pay |
--
 0 1 2 3 4 5 6 7 8 9 A B C D E F

The first two bytes of the memory region contain the offset at which you will begin processing records: 0x0034.

This offset of the first record is followed by a sequence of word records, each consisting of a positive integer value, another
positive integer value, and a sequence of characters:

Length of record Offset of next record Characters in word
uint8_t uint16_t chars

The first value in each record specifies the total number of bytes in the record. Since words are relatively short, the value
will be stored as a uint8_t value, which has a range of 0-255. The record length is followed immediately by a uint16_t
value specifying the offset of the next word record in the list. This is followed by a sequence of ASCII codes for the
characters that make up the word. (The term “word” is used a bit loosely here.) There is no terminator after the final
character of the string, so be careful about that.

Note that the length of the record depends upon the number of characters in the word, and so these records vary in length.
That’s one reason we must store the offset for each record.

Since I’m using x86 hardware, integer values are stored in memory in little-endian order; that is, the low-order byte is
stored first (at the smallest address) and the high-order byte is stored last (at the largest address). So the bytes of a multi-
byte integer value appear to be reversed. For example, if we have in an int32_t variable the base-10 value 85147, the
corresponding base-16 representation world be 0x14C9B, and the in-memory representation would look like this:

9B 4C 01 00
low high

or, represented in pure binary:

10011011 01001100 00000001 00000000
low high

The least-significant byte (corresponding to the lowest powers of 2) is stored at the lowest address, and the most-significant
byte (corresponding to the highest powers of 2) is stored at the highest address.

As a programmer, you usually do not need to take the byte-ordering into account since the compiler will generate machine
language compatible with your hardware, and that will make use of the bytes in the appropriate manner. But, when you’re
reading memory displays, you must take the byte-ordering into account.

So, looking at the first two bytes of the memory block, we see that the word record we will process first occurs at relative
offset 0x0034 from the beginning of the memory block.

CS 2505 Computer Organization I C05: Chained Records in Memory

You may work in pairs on this assignment! 3

Let’s consider how to interpret the hexdump shown earlier:

 0 1 2 3 4 5 6 7 8 9 A B C D E F
--
00000000 34 00 0f 3a 00 69 6e 64 69 66 66 65 72 65 6e 63 |4..:.indifferenc|
00000010 65 05 3f 00 62 65 05 47 00 62 79 06 02 00 66 6f |e.?.be.G.by...fo|
00000020 72 0a 68 00 70 65 6e 61 6c 74 79 09 74 00 70 75 |r.h.penalty.t.pu|
00000030 62 6c 69 63 06 21 00 54 68 65 05 2b 00 74 6f 08 |blic.!.The.+.to.|
00000040 16 00 72 75 6c 65 64 07 4e 00 65 76 69 6c 07 55 |..ruled.N.evil.U|
00000050 00 6d 65 6e 2e 05 5a 00 2d 2d 08 00 00 50 6c 61 |.men..Z.--...Pla|
00000060 74 6f 06 83 00 6d 65 6e 07 62 00 67 6f 6f 64 05 |to...men.b.good.|
00000070 11 00 74 6f 0a 7e 00 61 66 66 61 69 72 73 05 6f |..to.~.affairs.o|
00000080 00 69 73 06 1b 00 70 61 79 |.is...pay |
--
 0 1 2 3 4 5 6 7 8 9 A B C D E F

The first word record consists of the bytes:

06 21 00 54 68 65

The length of the first record is 0x06 or 6 in base-10, which means that the string is 3 characters long, since the length field
occupies 1 byte and the offset of the next record occupies 2 bytes. The ASCII codes are 54 68 65, which represent the
characters “The”. The offset of the next record is 0x0021.

The second word record consists of the bytes:

0a 68 00 70 65 6e 61 6c 74 79

The length is 0x0a (10 in base-10), so the string is 7 characters long (the ASCII codes represent “penalty”), and the next
word record is at the offset 0x0068. And so forth… The complete quotation, with word record offsets, is:

0x0037: The
0x0024: penalty
0x006B: good
0x0065: men
0x0086: pay
0x001E: for
0x0005: indifference
0x003D: to
0x002E: public
0x0077: affairs
0x0081: is
0x0072: to
0x0014: be
0x0042: ruled
0x0019: by
0x004A: evil
0x0051: men.
0x0058: --
0x005D: Plato

To indicate the end of the sequence of word records, the final word record specifies that its successor is at an offset of 0,
which is invalid (since that’s the offset of the pointer to the first word record).

For case 1, your function will be passed the value CLEAR for the parameter Fmt.

CS 2505 Computer Organization I C05: Chained Records in Memory

You may work in pairs on this assignment! 4

You will use the WordRecord data type to represent a parsed word record:

struct _WordRecord {
 uint16_t offset; // offset at which word record was found in memory
 char* word; // dynamically alloc'd C-string containing the "word"
};
typedef struct _WordRecord WordRecord;

You will create one of these struct variables whenever you parse a word record, and place that struct variable into an
array supplied by the caller of your function.

Case 2 [20%] Untangling Mildly Encrypted Data Records in Memory

Read the posted notes on bitwise operations in C, and the related sections in your C reference text.

For this case, your function will be passed the value ENCRYPTED for the parameter Fmt.

The memory region pointed to by pBuffer will be formatted in exactly the same way as for case 1, except that the bytes
that represent the offset of the next record and the characters in the word will have been “masked”:

Length of record Masked offset of next record Masked characters in word
uint8_t uint16_t chars

Each of the ASCII codes in the word field has been XORed with a mask formed by taking the number of characters (bytes)
in the word, and reversing the nybbles of that value (remember, the length of the character sequence is stored as a one-byte
value). Each byte of the offset field has been XORed with the unmasked first byte in the word. You must “unmask” the
masked bytes in order to properly display the quotation.

Part of the assignment is for you to determine what operation(s) you can use to perform this unmasking. We will not
answer any questions about how to do that, except to say that you should consider the properties of the various bitwise
operations available in C. This is a good opportunity for you to discover the value of the Boolean algebra rules covered in
Discrete Mathematics.

Aside from the issue of unmasking the encrypted bytes, the logic of this part is identical to the handling without encryption,
so we will not repeat the detailed description given there. However, we will give you an example illustrating what must be
done:

 0 1 2 3 4 5 6 7 8 9 A B C D E F
--
00000000 25 00 0c 7e 61 f1 f3 f3 f5 e0 e4 f9 fe f7 0c 5e |%..~a..........^|
00000010 65 f5 fe e4 f5 e2 e4 f1 f9 fe 05 4d 62 42 45 06 |e..........MbBE.|
00000020 5f 69 59 44 1e 05 76 49 69 54 05 6e 74 54 4f 07 |_iYD..vIiT.ntTO.|
00000030 1a 61 21 22 2c 25 05 77 2d 0d 0d 04 28 61 71 05 |.a!",%.w-...(aq.|
00000040 0f 69 49 53 05 e1 61 41 4e 0a 18 74 04 18 1f 05 |.iIS..aAN..t....|
00000050 17 18 04 07 1b 6d 2d 21 32 2b 0c 41 41 d1 e2 f9 |.....m-!2+.AA...|
00000060 e3 e4 ff e4 fc f5 06 27 74 44 58 55 0a 75 77 07 |.......'tDXU.uw.|
00000070 19 04 18 1f 05 04 05 2b 6f 4f 46 05 7a 74 54 4f |.......+oOF.ztTO|
00000080 0b ee 65 e5 e4 f5 e3 e1 f4 e5 e4 07 47 6d 2d 29 |..e.........Gm-)|
00000090 2e 24 |.$ |
--
 0 1 2 3 4 5 6 7 8 9 A B C D E F

The first word record begins at offset 0x0025, and contains the bytes: 05 76 49 69 54

The length of the word is 0x02, so the mask is 0x20. XORing that with each byte of the string yields 49 74, which
represents the character string “It”.

CS 2505 Computer Organization I C05: Chained Records in Memory

You may work in pairs on this assignment! 5

And, XORing the first byte of the word with the bytes of the offset yields 3F 00, which is the offset of the next record. In
this case, the encrypted quotation decodes to:

0x0028: It
0x0042: is
0x0069: the
0x0056: mark
0x0079: of
0x0047: an
0x0083: educated
0x008E: mind
0x002D: to
0x001D: be
0x0032: able
0x007E: to
0x0011: entertain
0x003E: a
0x004C: thought
0x006F: without
0x0005: accepting
0x0022: it.
0x0039: --
0x005D: Aristotle

Testing and Grading

A tar file is posted for the assignment containing testing/grading code:

gradeC05.sh Bash script to perform automated testing; see the header comment for instructions.
Note that you cannot use the shell script for debugging purposes; you must execute your
program directly instead.

C05Grader.tar:
driver.c Test driver
Untangle.h Declarations for specified function
checkAnswer.h Declarations for answer-checking and grading function
checkAnswer.o 64-bit Linux binary for checking/grading code
Generator.h Declarations for test data generator
Generator.o 64-bit Linux binary for test data generator

Create Untangle.c and implement your version of it, then compile it with the files above. Read the header comments
in driver.c for instructions on using it.

The test driver produces two output files:

Log.txt shows your output, correct output, and score information
Data.bin binary file containing same bytes as the memory region used in the test

The second file cannot be viewed in most text editors. However, you can use the hexdump utility to display the contents
in a form that's almost identical to the examples shown earlier in this specification: hexdump -C Data.bin

The grading script automates the entire process of running the tests, including Valgrind. If Valgrind detects any errors at all
when your solution is tested, we will assess a penalty of 10% of the project score. We will also assess the penalty if your
solution does not allocate the char arrays for the words dynamically, or if your solution allocates arrays that are larger
than necessary.

CS 2505 Computer Organization I C05: Chained Records in Memory

You may work in pairs on this assignment! 6

What to Submit

You will submit your file Untangle.c to Canvas. That file must include any helper functions you have written and
called from your version of Untangle(); any such functions must be declared (as static) is the file you submit. You
must not include any extraneous code (such as implementations of main() in that file).

Your submission will be graded by running the supplied test/grading code on it.

If you work with a partner, make sure that the submitted file contains a properly-completed copy of the partners form
posted on the assignments page. Failure to do that will result in at least one of you not receiving credit for the assignment.

Pledge:

Each of your program submissions must be pledged to conform to the Honor Code requirements for this course.
Specifically, you must include the following pledge statement in the submitted file:

// On my honor:
//
// - I have not discussed the C language code in my program with
// anyone other than my instructor or the teaching assistants
// assigned to this course.
//
// - I have not used C language code obtained from another student,
// the Internet, or any other unauthorized source, either modified
// or unmodified.
//
// - If any C language code or documentation used in my program
// was obtained from an authorized source, such as a text book or
// course notes, that has been clearly noted with a proper citation
// in the comments of my program.
//
// - I have not designed this program in such a way as to defeat or
// interfere with the normal operation of the grading code.
//
// <Student Name>
// <Student's VT email PID>

We reserve the option of assigning a score of zero to any submission that is undocumented

or does not contain this statement.

Change Log

Any changes or corrections to the specification will be documented here.

Version Posted Pg Change
1.00 June 13 Base document.

