CS 2505 Computer Organization | Assignment 5: Bash Shell Scripting

This assignment assumes you have read the sections of Sobell specified on the course website. You should find the notes,
and the two bash script references from the notes handy as well.

Y ou must use your rlogin account or your own installation of Linux when you analyze these questions. In all cases, your
answers will be tested on the CentOS environment on rlogin. This is a purely individual assignment.

For question 1 type your answers in a plain text file; put your name and PID at the beginning of this file. For question 2
you will write a single bash shell script; be sure to name your scripts exactly according to the instructions in the questions.

When you have completed the assignment, you will create an uncompressed tar file containing your text file and completed
script file, and nothing else. Submit your file to the Curator system by the posted deadline for this assignment. No late
submissions will be accepted.

You will submit your answers to the Curator System (www.cs.vt.edu/curator) under the heading HWO 5.

1. Explain the output of each of the following commands. You may quote output as part of your answer, but we will
grade your explanation, not the output. Experimentation is encouraged. So is reading the relevant man pages.

a) [10 points] Let somefile be the name of a file in the current directory to which you have read access; explain
what the output from the following command tells you:

bash > stat -c "%x" somefile

b) [10 points] The following command would execute the command above, but put the output from stat into a
variable:

bash > varl="stat -c "%$x" somefile’
Explain what the output from the following, subsequent command tells you:
bash > date -d "$varl" +%s

¢) [10 points] The double-quotes around $varl in the command above are necessary. That is, the command will not
execute correctly if you omit them. Explain why... an example is necessary to make your answer clear.

d) [10 points] Explain the difference between the effects of the following two commands:

bash > basename pwd
bash > basename “pwd"

CS 2505 Computer Organization | Assignment 5: Bash Shell Scripting

Testing a shell script is not very different from testing any program. You must create appropriate input; that’s often a
matter of setting up a directory structure containing a particular arrangement of files, with certain properties (e.g.,
permissions, file types, timestamps). Here are some suggestions:

= Make liberal use of echo statements in testing your script. The contents of a string may not be at what you expect it to
be, due to the effect of special characters. You may also find it useful to experiment with the use of single- and
double-quotes, both in echo statements and elsewhere.

= Be creative in designing your test cases, but don’t worry about handling every kind of error a user might make when
writing command-line argument (at least not for this assignment).

= Be sure to disable diagnostic output in the release version (i.e., the one you submit) of your script.

A shell script is a program, and therefore subject to many of the same design and documentation expectations as any
program you would write for an assignment in any course. In particular:

= A script should check its command-line arguments, if it expects any. That includes not only making sure the right
number of arguments are provided, but also checking for logically necessary preconditions (e.g., that a file does exist,
or is readable).

= A script should be implemented using functions for actions that are likely to be useful in other scripts. (But, for this
assignment, do not put those functions into an external file.)

= A script should not leave a trail of side-effects. For example, it should not alter any preexisting files unless the
description of the script’s functionality implies it will do so. In some cases, a script may need to create a temporary file
or directory to use during its execution; if so, the script should remove those things before it exits (in all cases).

= Whenever the script terminates, after a successful execution or otherwise, the script should print useful diagnostic
messages to standard output. Such messages should be concise but informative.

= The script should be documented. Internal documentation serves two purposes. Major sections of the script should be
preceded by a brief comment stating what role the section plays in the operation of the script. Within a section,
comments serve to explain anything subtle that a casual user of the script might not easily understand. It is not
necessary to write a comment for every line in the script; trivial comments (e.g., “increment variable™) actually reduce
readability while providing no enlightenment.

The scripts you write for this class (and this assignment) are expected to meet the expectations stated above.
2. [30 points] Write a bash script, swap . sh, that takes two file names as parameters and swaps the two files:

Synopsis: swap.sh FILEl FILEZ2

Description:
Swaps the specified files without leaving a temporary file.
Both FILEs must be regular files, and must already exist and
be readable and writable.

successful completion

invalid number of arguments

one or both of the FILEs do not exist

one or both of the FILEs exist but are not regular
one or both of FILEs aren’t readable and writeable
some other error occurred

#
#
#
#
#
#
Exit codes:
#
#
#
#
#
#

g w N O

For example, the script might be invoked as:

bash > ./swap.sh a.c b.c

