Boolean Algebra

A *Boolean algebra* is a set *B* of values together with:

- two binary operations, commonly denoted by + and \cdot ,
- a unary operation, usually denoted by or ~ or ',
- two elements usually called *zero* and *one*, such that for every element *x* of *B*:

$$x + \overline{x} = 1$$
 and $x \cdot \overline{x} = 0$

In addition, certain axioms must be satisfied:

- closure properties for both binary operations and the unary operation
- associativity of each binary operation over the other,
- commutativity of each each binary operation,
- distributivity of each binary operation over the other,
- absorption rules,
- existence of complements with respect to each binary operation

We will assume that \cdot has higher precedence than +; however, this is not a general rule for all Boolean algebras.

Associative Laws: for all a, b and c in B,

$$(a+b)+c=a+(b+c)$$

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Commutative Laws: for all a and b in B,

$$a+b=b+a$$

$$a \cdot b = b \cdot a$$

Distributive Laws: for all a, b and c in B,

$$a + (b \cdot c) = (a+b) \cdot (a+c)$$

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

Absorption Laws: for all a, b and c in B,

$$a + (a \cdot b) = a$$

$$a \cdot (a+b) = a$$

Existence of Complements: for all a in B, there exists an element \bar{a} in B such that

$$a + \overline{a} = 1$$

$$a \cdot \overline{a} = 0$$

Examples of Boolean Algebras

The classic example is $B = \{true, false\}$ with the operations AND, OR and NOT.

An isomorphic example is $B = \{1, 0\}$ with the operations +, \cdot and \sim defined by:

a	b	a+b	$a \cdot b$	~a
0	0	0	0	1
1	0	1	0	0
0	1	1	0	
1	1	1	1	

Given a set S, the power set of S, P(S) is a Boolean algebra under the operations union, intersection and relative complement.

Other, interesting examples exist...

More Properties

It's also possible to derive some additional facts, including:

- the elements 0 and 1 are unique
- the complement of an element a is unique
- 0 and 1 are complements of each other

DeMorgan's Laws are useful theorems that can be derived from the fundamental properties of a Boolean algebra.

For all
$$a$$
 and b in B , $\overline{a+b} = \overline{a} \cdot \overline{b}$ $\overline{a \cdot b} = \overline{a} + \overline{b}$

$$\overline{a+b} = \overline{a} \cdot \overline{b}$$

$$\overline{a \cdot b} = \overline{a} + \overline{b}$$

$$\overline{a} = a$$

And there are *idempotency laws*:
$$a + a = a$$

$$a + a = a$$

$$a \cdot a = a$$

$$a + 0 = a \qquad a \cdot 0 = 0$$

$$a \cdot 0 = 0$$

$$a+1=1$$
 $a\cdot 1=a$

$$a \cdot 1 = a$$

A *logic expression* is defined in terms of the three basic Boolean operators and variables which may take on the values 0 and 1. For example:

$$z: \ \mathbf{x}_0 \cdot \overline{\mathbf{y}_0} + \overline{\mathbf{x}_0} \cdot \mathbf{y}_0$$

$$y: (x_1 \cdot x_2) + (x_1 \cdot \overline{x_2} \cdot x_3) + \overline{x_1} \cdot (\overline{x_2} + x_3)$$

A *logic equation* is an assertion that two logic equations are *equal*, where equal means that the values of the two expressions are the same for all possible assignments of values to their variables. For example:

$$\mathbf{x}_0 \cdot \overline{\mathbf{y}_0} + \overline{\mathbf{x}_0} \cdot \mathbf{y}_0 = \overline{(\overline{\mathbf{x}_0} + \mathbf{y}_0) \cdot (\mathbf{x}_0 + \overline{\mathbf{y}_0})}$$

Of course, equations may be true or false. What about the one above?

A Boolean expression can often be usefully transformed by using the theorems and properties stated earlier:

$$(\overline{x_0} + y_0) \cdot (\overline{x_0} + \overline{y_0}) = (\overline{x_0} + y_0) + (\overline{x_0} + \overline{y_0})$$

$$= \overline{x_0} \cdot \overline{y_0} + \overline{x_0} \cdot \overline{y_0}$$

$$= x_0 \cdot \overline{y_0} + \overline{x_0} \cdot y_0$$

This is a relatively simple example of a reduction. Try showing the following expressions are equal:

$$\overline{x_0 + (y_0 \cdot z_0)} = \overline{x_0} \cdot \overline{y_0} + \overline{x_0} \cdot \overline{z_0}$$

A *tautology* is a Boolean expression that evaluates to true (1) for all possible values of its variables.

$$a + \overline{a}$$
 $a \cdot b + a \cdot \overline{b} + \overline{a} \cdot b + \overline{a} \cdot \overline{b}$

A *contradiction* is a Boolean expression that evaluates to false (0) for all possible values of its variables.

$$a \cdot a$$

A Boolean expression is *satisfiable* if there is at least one assignment of values to its variables for which the expression evaluates to true (1).

$$a \cdot b + \overline{a} \cdot \overline{b}$$

Truth Tables

A Boolean expression may be analyzed by creating a table that shows the value of the expression for all possible assignments of values to its variables:

a	b	$a \cdot b$	$\overline{a} \cdot \overline{b}$	$a \cdot b + \overline{a} \cdot \overline{b}$
0	0	0	1	1
1	0	0	0	0
0	1	0	0	0
1	1	1	0	1

Boolean equations may be proved using truth tables (dull and mechanical):

$$a + 1 = 1$$

a	a+1
0	1
1	1

$$\overline{a \cdot b \cdot c} = \overline{a} + \overline{b} + \overline{c}$$

a	b	С	$a \cdot b \cdot c$	$\overline{a} + \overline{b} + \overline{c}$
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

Boolean equations may be proved using truth tables, which is dull and boring, or using the algebraic properties:

$$\forall a \in B, a \cdot 1 = a$$

$$a = a \cdot \left(a + \overline{a}\right)$$
$$= a \cdot 1$$

absorption, with
$$b = \overline{a}$$

law of complements

Note the duality

$$\forall a \in B, a+0=a$$

$$a = a + \left(a \cdot \overline{a}\right)$$
$$= a + 0$$

absorption, with
$$b = \bar{a}$$

law of complements

Proving Equations Algebraically

$$\forall a \in B, a + a = a$$

$$a = a + a \cdot 1$$
 absorption, with $b = 1$
 $= a + a \cdot (a + \overline{a})$ law of complements
 $= a + a$ absorption, with $b = \overline{a}$

A Boolean expression is said to be in *sum-of-products form* if it is expressed as a sum of terms, each of which is a product of variables and/or their complements:

$$a \cdot b + \overline{a} \cdot \overline{b}$$

It's relatively easy to see that every Boolean expression can be written in this form. Why?

The summands in the sum-of-products form are called *minterms*.

- each minterm contains each variables, or its complement, exactly once
- each minterm is unique, and therefore so is the representation (aside from order)

Example

Given a truth table for a Boolean function, construction of the sum-of-products representation is trivial:

- for each row in which the function value is 1, form a product term involving all the variables, taking the variable if its value is 1 and the complement if the variable's value is 0
- take the sum of all such product terms

				1	
X	у	Z	F		
0	0	0	0		
0	0	1	1 -	$\xrightarrow{\overline{x}\cdot\overline{y}\cdot z}$	
0	1	0	1 -	$\overline{x} \cdot y \cdot \overline{z}$	
0	1	1	0		
1	0	0	1 -	$x \cdot \overline{y} \cdot \overline{z}$	$F = x \cdot y \cdot z + $
1	0	1	0		
1	1	0	0		
1	1	1	1 -	$x \cdot y \cdot z$	

A Boolean expression is said to be in *product-of-sums form* if it is expressed as a product of terms, each of which is a sum of variables:

$$(a+b)\cdot(\overline{a}+\overline{b})$$

Every Boolean expression can also be written in this form, as a product of *maxterms*.

Facts similar to the sum-of-products form can also be asserted here.

The product-of-sums form can be derived by expressing the complement of the expression in sum-of-products form, and then complementing.

Example

Given a truth table for a Boolean function, construction of the product-of-sums representation is trivial:

- for each row in which the function value is 0, form a product term involving all the variables, taking the variable if its value is 1 and the complement if the variable's value is 0
- take the sum of all such product terms; then complement the result

Х	у	Z	F	
0	0	0	0 -	$\xrightarrow{x} \xrightarrow{y} \xrightarrow{z}$
0	0	1	1	
0	1	0	1	
0	1	1	0 -	$ \overrightarrow{x} \cdot y \cdot z \qquad \overrightarrow{F} = \overrightarrow{x} \cdot \overrightarrow{y} \cdot \overrightarrow{z} + \overrightarrow{x} \cdot y \cdot z + x \cdot \overrightarrow{y} \cdot z + x \cdot y \cdot z $
1	0	0	1	
1	0	1	0 -	
1	1	0	0 -	
1	1	1	1	$(x+y+z)\cdot(x+y+z)$

Boolean Functions

A *Boolean function* takes n inputs from the elements of a Boolean algebra and produces a single value also an element of that Boolean algebra.

For example, here are all possible 2-input Boolean functions on the set $\{0, 1\}$:

А	В	zero	and		Α		В	xor	or
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Α	В	nor	eq	B'		A'		nand	one
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Universality

Any Boolean function can be expressed using:

- only AND, OR and NOT
- only AND and NOT
- only OR and NOT
- only AND and XOR
- only NAND
- only NOR

The first assertion should be entirely obvious.

The remaining ones are obvious if you consider how to represent each of the functions in the first set using only the relevant functions in the relevant set.