Multiplexor

A multiplexor is a device that takes a number of data inputs and selects one of them to pass through as its output.

The interface of a multiplexor provides means to control which data input value is selected.

If there are K data input signals, then at least log K bits are needed to specify which input signal is to be passed through.

So, in most cases, multiplexors take 2ⁿ data input signals and n control signals.

Designing a Multiplexor

Consider a 2¹ x 1 multiplexor; it takes two data inputs D0 and D1 and a single select bit S:

D0	D1	S	Output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

$$Output = \overline{D_0} \cdot D_1 \cdot S + D_0 \cdot \overline{D_1} \cdot \overline{S} + D_0 \cdot D_1 \cdot \overline{S} + D_0 \cdot D_1 \cdot S$$
$$= (\overline{D_0} + D_0) \cdot D_1 \cdot S + (\overline{D_1} + D_1) \cdot D_0 \cdot \overline{S}$$
$$= D_0 \cdot \overline{S} + D_1 \cdot S$$

2 x 1 multiplexor

Plexers 3

$$Out = I_0 \cdot \overline{S_1} \cdot \overline{S_0} + I_1 \cdot \overline{S_1} \cdot S_0 + I_2 \cdot S_1 \cdot \overline{S_0} + I_3 \cdot S_1 \cdot S_0$$

Decoder

An n x 2^n *decoder* takes n inputs and sets exactly one of its 2^n outputs, based upon the pattern of its inputs.

2 x 4 decoder

$$Out00 = \overline{I_0} \cdot \overline{I_1}$$

$$Out01 = \overline{I_1}I_0$$

$$Out10 = I_1 \cdot \overline{I_0}$$

$$Out11 = I_0 \cdot I_1$$

Encoders and Demultiplexors

A 2ⁿ x n *encoder* takes 2ⁿ inputs and sets each of its n outputs, based upon the pattern of its inputs.

Essentially, an encoder is the inverse of a decoder.

Similarly, a $1 \ge 2^n$ demultiplexor:

It takes 1 input and transmits that input on exactly one of its outputs, determined by the pattern of its n selector bits.

