
C-Strings

Computer Organization I

1

CS@VT ©2005-2020 WD McQuain

String Representation in C

char Word[7] = "string";

There is no special type for (character) strings in C; rather, char arrays are used.

W
o
r
d
[
0
]

W
o
r
d
[
1
]

W
o
r
d
[
2
]

W
o
r
d
[
3
]

W
o
r
d
[
4
]

W
o
r
d
[
5
]

W
o
r
d
[
6
]

's' 't' 'r' 'i' 'n' 'g' '\0'

string terminator

A C-string is just an array of char variables.

A special character, the string terminator, is put in the array cell after the end of the string.

Absent string terminators are a frequent source of errors in C programs.

C-Strings

Computer Organization I

2

CS@VT ©2005-2020 WD McQuain

String Representation in C

char Word[7] = "string";

printf("str: %s\n", Word);

C treats char arrays as a special case in output code:

• the %s format specifier is used to print a C-string

• the contents of the char array are printed as a string…

• if there's no string terminator… bad things happen…

The following notes contain many C examples.

Many of those are designed to show:

• what can go wrong with C-strings

• how NOT to do things

C-Strings

Computer Organization I

3

CS@VT ©2005-2020 WD McQuain

Some C String Library Functions

The C Standard Library includes the following function for copying blocks of memory:

void* memcpy(void* restrict s1, const void* restrict s2,

size_t n);

Copies n bytes from the object pointed to by s2 into the object pointed to by s1.

If copying takes place between objects that overlap, the behavior is undefined.
Returns the value of s1.

string.h

memcpy() is potentially more efficient than a user-defined loop.

memcpy() may trigger a segfault error if:

- the destination region specified by s1 is not large enough to allow copying n bytes

- n bytes cannot be copied from the region specified by s2

C-Strings

Computer Organization I

4

CS@VT ©2005-2020 WD McQuain

The memcpy() Interface

The memcpy() interface employs a few interesting features:

void* memcpy(void* restrict s1, const void* restrict s2,

size_t n);

void* says nothing about the data type to which s1 and s2 point;

which makes sense since memcpy() deals with raw bytes of data and therefore

doesn't care, or need to know, about types

restrict implies (more or less) that no pointer in the same context points to the same

target;
here, restrict implies that s1 and s2 do not share the same target;

the implied guarantee cannot be verified by the compiler;

this is of interest mainly to compiler writers

C-Strings

Computer Organization I

5

CS@VT ©2005-2020 WD McQuain

More C String Library Functions

And, there are functions that support operations on C strings, including:

char* strcpy(char* restrict s1, const char* restrict s2);

Copies the string pointed to by s2 (including the terminating null character) into the

array pointed to by s1.

If copying takes place between objects that overlap, the behavior is undefined.
Returns the value of s1.

string.h

strcpy() execution depends on several assumptions:

- the string pointed to by s2 is properly terminated by a null character

- the array pointed to by s1 is long enough to hold all the characters in the

string pointed to by s2 and a terminator

strcpy() cannot verify either assumption and may produce serious errors if abused

C-Strings

Computer Organization I

6

CS@VT ©2005-2020 WD McQuain

C String Library Hazards

The memcpy() and strcpy() functions illustrate classic hazards of the C library.

If the target of the parameter s1 to memcpy() is smaller than n bytes, then memcpy()

will attempt to write data past the end of the target, likely resulting in a logic error and
possibly a runtime error. A similar issue arises with the target of s2.

The same issue arises with strcpy(), but strcpy() doesn't even take a parameter

specifying the maximum number of bytes to be copied, so there is no way for strcpy() to

even attempt to enforce any safety measures.

Worse, if the target of the parameter s1 to strcpy() is not properly 0-terminated, then the

strcpy() function will continue copying until a 0-byte is encountered, or until a runtime

error occurs. Either way, the effect will not be good.

C-Strings

Computer Organization I

7

CS@VT ©2005-2020 WD McQuain

Bad strcpy()!

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main() {

char s1[] = "K & R: the C Programming Language";

char s2[1];

strcpy(s2, s1); // s2 is too small!

printf("s1: >>%s<<\n", s1);

printf("s2: >>%s<<\n", s2);

return 0;

}

centos > gcc -o badcpy -std=c11 -Wall badcpy.c
centos > badcpy
s1: >> & R: the C Programming Language<<
s2: >>K & R: the C Programming Language<<

No warnings at all

from the compiler!

No runtime errors!

C-Strings

Computer Organization I

8

CS@VT ©2005-2020 WD McQuain

Safer Copying

char* strncpy(char* restrict s1, const char* restrict s2,

size_t n);

Copies not more than n characters (characters that follow a null character are not

copied) from the array pointed to by s2 to the array pointed to by s1.

If copying takes place between objects that overlap, the behavior is undefined.

If the array pointed to by s2 is a string that is shorter than n characters, null

characters are appended to the copy in the array pointed to by s1, until n characters

in all have been written.

Returns the value of s1.

Of course, strncpy() must trust the caller that the array pointed to by s1 can hold

at least n characters; otherwise errors may occur.

And, this still raises the hazard of an unreported truncation if s2 contains more than

n characters that were to be copied to s1, and null termination of the destination is

not guaranteed in that case.

C-Strings

Computer Organization I

9

CS@VT ©2005-2020 WD McQuain

C-string Library: String Length

size_t strlen(const char* s);

Computes the length of the string pointed to by s.

Returns the number of characters that precede the terminating null character.

Hazard: if there's no terminating null character then strlen() will read until it

encounters a null byte or a runtime error occurs.

C-Strings

Computer Organization I

10

CS@VT ©2005-2020 WD McQuain

Good strncpy()

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main() {

char s1[] = "K & R: the C Programming Language";

char s2[] = ""; // same effect as {'\0'}

strncpy(s2, s1, strlen(s2)); // use length of s2 as limit

printf("s1: %s\n", s1);

printf("s2: %s\n", s2);

return 0;

}

centos > gcc -o badcpy -std=c11 -Wall badcpy.c
centos > badcpy
s1: >>K & R: the C Programming Language<<
s2: >><< … and it's all good?

C-Strings

Computer Organization I

11

CS@VT ©2005-2020 WD McQuain

Good strncpy()

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main() {

char s1[] = "K & R: the C Programming Language";

char s2[] = "too short";

strncpy(s2, s1, strlen(s2)); // use length of s2 as limit

printf("s1: %s\n", s1);

printf("s2: %s\n", s2);

return 0;

}

centos > gcc -o badcpy -std=c11 -Wall badcpy.c
centos > badcpy
s1: >>K & R: the C Programming Language<<
s2: >>K & R: t<< … and it's all good?

C-Strings

Computer Organization I

12

CS@VT ©2005-2020 WD McQuain

C-string Library: Concatenation

char* strcat(char* restrict s1, const char* restrict s2);

Appends a copy of the string pointed to by s2 (including the terminating null character) to

the end of the string pointed to by s1.

The initial character of s2 overwrites the null character at the end of s1.

If copying takes place between objects that overlap, the behavior is undefined.

Returns the value of s1.

. . .

char s1[] = "K & R: ";

char s2[] = "the C Programming Language";

strcat(s1, s2); // s1 is too small!

printf("s1: >>%s<<\n", s1);

printf("s2: >>%s<<\n", s2);

. . .
centos > badCat
s1: >>K & R: the C Programming Language<<
s2: >>the C Programming Language<<
Segmentation fault (core dumped)

C-Strings

Computer Organization I

13

CS@VT ©2005-2020 WD McQuain

C-string Library: Safer Concatenation

char* strncat(char* restrict s1, const char* restrict s2,

size_t n);

Appends not more than n characters (a null character and characters that follow it are not

appended) from the array pointed to by s2 to the end of the string pointed to by s1.

The initial character of s2 overwrites the null character at the end of s1.

A terminating null character is always appended to the result.

If copying takes place between objects that overlap, the behavior is undefined.

Returns the value of s1.

. . .

char s1[] = "K & R: ";

char s2[] = "the C Programming Language";

strncat(s1, s2, strlen(s1));

printf("s1: >>%s<<\n", s1);

printf("s2: >>%s<<\n", s2);

. . .

centos > goodCat
s1: >>K & R: the C Pr<<
s2: >>the C Programming Language<<

… and it's all good?

C-Strings

Computer Organization I

14

CS@VT ©2005-2020 WD McQuain

C-string Library: Comparing C-strings

int strcmp(const char* s1, const char* s2);

Compares the string pointed to by s1 to the string pointed to by s2.

The strcmp function returns an integer greater than, equal to, or less than zero, accordingly as

the string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2.

. . .

char s1[] = "lasting";

char s2[4] = {'l', 'a', 's', 't'}; // no terminator!

int comp = strcmp(s1, s2);

if (comp < 0) {

printf("%s < %s\n", s1, s2);

}

else if (comp > 0) {

printf("%s < %s\n", s2, s1);

}

. . .
centos > badCmp
lasting < lastlasting

"last" precedes "lasting"

C-Strings

Computer Organization I

15

CS@VT ©2005-2020 WD McQuain

. . .

char s1[] = "lasting";

char s2[4] = {'l', 'a', 's', 't'}; // no terminator!

int comp = strncmp(s1, s2, strlen(s2));

if (comp < 0) {

printf("%s < %s\n", s1, s2);

}

else if (comp > 0) {

printf("%s < %s\n", s2, s1);

}

. . .

C-string Library: Comparing C-strings

int strncmp(const char* s1, const char* s2, size_t n);

Compares not more than n characters (characters that follow a null character are not

compared) from the array pointed to by s1 to the array pointed to by s2.

The strncmp function returns an integer greater than, equal to, or less than zero, accordingly

as the possibly null-terminated array pointed to by s1 is greater than, equal to, or less than the

possibly null-terminated array pointed to by s2.

better?

centos > betterCmp
lasting < lastlasting

C-Strings

Computer Organization I

16

CS@VT ©2005-2020 WD McQuain

. . .

char s1[] = "string the first";

char s2[] = "string the second";

int comp = strncmp(s1, s2, 8); // don't use full string

if (comp < 0) {

printf("%s < %s\n", s1, s2);

}

else if (comp > 0) {

printf("%s < %s\n", s2, s1);

}

else {

printf("%s == %s\n", s1, s2);

}

. . .

C-string Library: Comparing C-strings

Moral: in the absence of a terminator, C-strings can behave abominably!

strcmp() would get this right

centos > goodCmp
string the first == string the second

But… even with a terminator, you can fool yourself:

C-Strings

Computer Organization I

17

CS@VT ©2005-2020 WD McQuain

The Devil's Function

The C language included the regrettable function:

char* gets(char* s);

The intent was to provide a method for reading character data from standard input to a char

array.

gets() has no information about the size of the buffer pointed to by the parameter s.

Imagine what might happen if the buffer was far too small.

Imagine what might happen if the buffer was on the stack.

The function is officially deprecated, but it is still provided by gcc and on Linux systems.

C-Strings

Computer Organization I

18

CS@VT ©2005-2020 WD McQuain

Example: Duplicate a C-string

/** Makes a duplicate of a given C string.

* Pre: *str is a null-terminated array

* Returns: pointer to duplicate of *str; NULL on failure

* Calls: calloc()

*/

char* dupeString(const char* const str) {

// Allocate array to hold duplicate, using calloc() to

// fill new array with zeroes;

// return NULL if failure

char* cpy = calloc(strlen(str) + 1, sizeof(char));

if (cpy == NULL) return NULL;

// Copy characters until terminator in *str is reached

int idx = 0;

while (str[idx] != '\0') {

cpy[idx] = str[idx];

idx++;

}

return cpy;

}

C-Strings

Computer Organization I

19

CS@VT ©2005-2020 WD McQuain

Example: Duplicate a C-string II

/** Makes a duplicate of a given C string.

* Pre: *str is a null-terminated array

* Returns: pointer to duplicate of *str; NULL on failure

* Calls: calloc(), memcpy()

*/

char* dupeString(const char* const str) {

// Allocate array to hold duplicate, using calloc() to

// fill new array with zeroes;

// return NULL if failure

char* cpy = calloc(strlen(str) + 1, sizeof(char));

if (cpy == NULL) return NULL;

// Use memcpy() to copy characters from *str to *cpy

memcpy(cpy, str, strlen(str));

return cpy;

}

C-Strings

Computer Organization I

20

CS@VT ©2005-2020 WD McQuain

Example: Truncate a C-string

/** Truncates a given C string at a given character.

* Pre: *str is a null-terminated array

* Returns: true if string was terminated

*/

bool truncString(char* const str, char ch) {

// Walk *str until ch is found or end of string is reached

int idx = 0;

while (str[idx] != '\0') {

if (str[idx] == ch) {

str[idx] = '\0';

return true;

}

idx++;

}

return false;

}

C-Strings

Computer Organization I

21

CS@VT ©2005-2020 WD McQuain

Example: Concatenate C-strings

/** Creates a new, dynamically-allocated string that holds the

* contcatenation of two strings, with a caller-specified

* separator.

* Pre: s1, s2, and separator are valid C-strings

* Returns: pointer to a new C-string as described.

*/

char* mergeStrings(const char* s1, const char* s2,

const char* separator) {

int mergeSize = strlen(s1) + // allow for s1

strlen(separator) + // allow for separator

strlen(s2) + // allow for s2

1; // allow for terminator

char* merged = calloc(mergeSize, sizeof(char));

if (merged == NULL) return merged;

strncat(merged, s1, strlen(s1));

strncat(merged, separator, strlen(s2));

strncat(merged, s2, strlen(s2));

return merged;

}

C-Strings

Computer Organization I

22

CS@VT ©2005-2020 WD McQuain

Some Historical Perspective

There's an interesting recent column, by Poul-Henning Kamp, on the costs and

consequences of the decision to use null-terminated arrays to represent strings in C (and
other languages influenced by the design of C):

. . .

Should the C language represent strings as an address + length tuple or just as

the address with a magic character (NUL) marking the end? This is a decision

that the dynamic trio of Ken Thompson, Dennis Ritchie, and Brian Kernighan

must have made one day in the early 1970s, and they had full freedom to

choose either way. I have not found any record of the decision, which I admit

is a weak point in its candidacy: I do not have proof that it was a conscious

decision.

C-Strings

Computer Organization I

23

CS@VT ©2005-2020 WD McQuain

Some Historical Perspective

As far as I can determine from my research, however, the address + length

format was preferred by the majority of programming languages at the time,

whereas the address + magic_marker format was used mostly in assembly

programs. As the C language was a development from assembly to a portable

high-level language, I have a hard time believing that Ken, Dennis, and Brian

gave it no thought at all.

Using an address + length format would cost one more byte of overhead than

an address + magic_marker format, and their PDP computer had limited core

memory. In other words, this could have been a perfectly typical and rational

IT or CS decision, like the many similar decisions we all make every day; but

this one had quite atypical economic consequences.

. . .

http://queue.acm.org/detail.cfm?id=2010365

