
5.13 Historical Perspective and Further
Reading

This history section gives an overview of memory technologies, from mercury
delay lines to DRAM, the invention of the memory hierarchy, and protection
mechanisms, and concludes with a brief history of operating systems, including
CTSS, MULTICS, UNIX, BSD UNIX, MS-DOS, Windows, and Linux.

The developments of most of the concepts in this chapter have been driven by
revolutionary advances in the technology we use for memory. Before we discuss
how memory hierarchies were developed, let’s take a brief tour of the develop-
ment of memory technology. In this section, we focus on the technologies for
building main memory and caches; Chapter 8 will provide some of the history of
developments in disk technology.

The ENIAC had only a small number of registers (about 20) for its storage and
implemented these with the same basic vacuum tube technology that it used for
building logic circuitry. However, the vacuum tube technology was far too expen-
sive to be used to build a larger memory capacity. Eckert came up with the idea
of developing a new technology based on mercury delay lines. In this technology,
electrical signals were converted into vibrations that were sent down a tube of
mercury, reaching the other end, where they were read out and recirculated. One
mercury delay line could store about 0.5 Kbits. Although these bits were accessed
serially, the mercury delay line was about a hundred times more cost-effective
than vacuum tube memory. The fi rst known working mercury delay lines were
developed at Cambridge for the EDSAC. Figure 5.13.1 shows the mercury delay
lines of the EDSAC, which had 32 tanks and 512 36-bit words.

Despite the tremendous advance offered by the mercury delay lines, they were
terribly unreliable and still rather expensive. The breakthrough came with the
invention of core memory by J. Forrester at MIT as part of the Whirlwind project
in the early 1950s (see Figure 5.13.2). Core memory uses a ferrite core, which can
be magnetized, and once magnetized, acts as a store (just as a magnetic recording
tape stores information). A set of wires running through the center of the core,
which had a dimension of 0.1–1.0 millimeters, makes it possible to read the value
stored on any ferrite core. The Whirlwind eventually included a core memory with
2048 16-bit words, or 32 Kbits. Core memory was a tremendous advance: it was
cheaper, faster, much more reliable, and had higher density. Core memory was so
much better than the alternatives that it became the dominant memory technology
only a few years after its invention and remained so for nearly 20 years.

. . . the one single develop-
ment that put computers
on their feet was the
invention of a reliable form
of mem ory, namely, the core
memory. . . . Its cost was
reasonable, it was reliable
and, because it was reli able,
it could in due course be
made large.

Maurice Wilkes,
Memoirs of a Computer
Pioneer, 1985

. . . the one single develop-
ment that put computers
on their feet was the
invention of a reliable form
of mem ory, namely, the core
memory. . . . Its cost was
reasonable, it was reliable
and, because it was reli able,
it could in due course be
made large.

Maurice Wilkes,
Memoirs of a Computer
Pioneer, 1985

5.13-2 5.13 Historical Perspective and Further Reading

FIGURE 5.13.1 The mercury delay lines in the EDSAC. This technology made it possible to build
the fi rst stored-program computer. The young engineer in this photograph is none other than Maurice
Wilkes, the lead architect of the EDSAC.

 5.13 Historical Perspective and Further Reading 5.13-3

The technology that replaced core memory was the same one that we now use
both for logic and for memory: the integrated circuit. While registers were built
out of transistorized memory in the 1960s, and IBM computers used transistor-
ized memory for microcode store and caches in 1970, building main memory out
of transistors remained prohibitively expensive until the development of the inte-
grated circuit. With the integrated circuit, it became possible to build a DRAM
(dynamic random access memory—see Appendix C for a description). The
fi rst DRAMs were built at Intel in 1970, and the computers using DRAM memo ries
(as a high-speed option to core) came shortly thereafter; they used 1 Kbit DRAMs.
In fact, computer folklore says that Intel developed the microprocessor partly to

FIGURE 5.13.2 A core memory plane from the Whirlwind containing 256 cores arranged in
a 16 x 16 array. Core memory was invented for the Whirlwind, which was used for air defense problems,
and is now on display at the Smithsonian. (Incidentally, Ken Olsen, the founder of Digital and its president
for 20 years, built the computer that tested these core memories; it was his fi rst computer.)

5.13-4 5.13 Historical Perspective and Further Reading

help sell more DRAM. Figure 5.13.3 shows an early DRAM board. By the late
1970s, core memory became a historical curiosity. Just as core memory technology
had allowed a tremendous expansion in memory size, DRAM tech nology allowed
a comparable expansion. In the 1990s, many personal computers had as much
memory as the largest computers using core memory ever had.

Nowadays, DRAMs are typically packaged with multiple chips on a little board
called a DIMM (dual inline memory module). The SIMM (single inline memory
module) shown in Figure 5.13.4 contains a total of 1 MB and sold for about $5 in
1997. As of 2004, DIMMs were available with up to 1024 MB and sold for about
$100. While DRAMs will remain the dominant memory technology for some
time to come, innovations in the packaging of DRAMs to provide both higher
bandwidth and greater density are ongoing.

FIGURE 5.13.3 An early DRAM board. This board uses 18 Kbit chips.

 5.13 Historical Perspective and Further Reading 5.13-5

The Development of Memory Hierarchies

Although the pioneers of computing foresaw the need for a memory hier archy and
coined the term, the automatic management of two levels was fi rst proposed by
Kilburn and his colleagues and demonstrated at the University of Manchester with
the Atlas computer, which implemented virtual memory. This was the year before
the IBM 360 was announced. IBM planned to include virtual memory with the
next generation (System/370), but the OS/360 operating system wasn’t up to the
challenge in 1970. Virtual memory was announced for the 370 family in 1972, and
it was for this computer that the term translation-lookaside buffer was coined. The
only computers today without virtual memory are a few supercom puters, and even
they may add this feature in the near future.

The problems of inadequate address space have plagued designers repeatedly.
The architects of the PDP-11 identifi ed a small address space as the only architec-
tural mistake from which it is diffi cult to recover. When the PDP-11 was designed,
core memory densities were increasing at a very slow rate, and the competition
from 100 other minicomputer companies meant that DEC might not have a cost-
competitive product if every address had to go through the 16-bit datapath twice—
hence, the decision to add just 4 more address bits than the pre decessor of the
PDP-11, to 16 from 12. The architects of the IBM 360 were aware of the importance
of address size and planned for the architecture to extend to 32 bits of address. Only
24 bits were used in the IBM 360, however, because the low-end 360 models would
have been even slower with the larger ad dresses. Unfortunately, the expansion
effort was greatly complicated by programmers who stored extra information in

FIGURE 5.13.4 A 1 MB SIMM, built in 1986, using 1 Mbit chips. This SIMM sold for about
$5/MB in 1997. As of 2006, most main memory is packed in DIMMs similar to this, though using much
higher-density memory chips (1 Gbit).

5.13-6 5.13 Historical Perspective and Further Reading

the upper 8 “unused” address bits. The wider address lasted until 2000, when IBM
expanded the architecture to 64 bits in the z-series.

Running out of address space has often been the cause of death for an architec-
ture, while other architectures have managed to make the transition to a larger
address space. For example, the PDP-11, a 16-bit computer, was replaced by the
32-bit VAX. The 80386 extended the 80286 architecture from a segmented 24-bit
address space to a fl at 32-bit address space in 1985. In the 1990s, several RISC
instruction sets made the transition from 32-bit addressing to 64-bit addressing
by providing a compatible extension of their instruction sets. MIPS was the fi rst to
do so. A decade later Intel and HP announced the IA-64 in large part to provide a
64-bit address successor to the 32-bit Intel IA-32 and HP Precision architectures.
Most architects are currently betting against the revolutionary IA-64 versus the
evolutionary AMD64. Both the winner and loser will certainly be noted in the
history of computer architecture and in the boardrooms of both corporations.

Many of the early ideas in memory hierarchies originated in England. Just a few
years after the Atlas paper, Wilkes [1965] published the fi rst pa per describing the
concept of a cache, calling it a “slave”:

The use is discussed of a fast core memory of, say, 32,000 words as slave to a
slower core memory of, say, one million words in such a way that in prac tical
cases the effective access time is nearer that of the fast memory than that of the
slow memory.

This two-page paper describes a direct-mapped cache. Although this was the fi rst
publication on caches, the fi rst implementation was probably a direct-mapped
instruction cache built at the University of Cambridge by Scarrott and described at
the 1965 IFIP Congress. It was based on tunnel diode memory, the fastest form of
memory available at the time.

Subsequent to that publication, IBM started a project that led to the fi rst com-
mercial computer with a cache, the IBM 360/85. Gibson at IBM recog nized that
memory-accessing behavior would have a signifi cant impact on performance. He
described how to measure program behavior and cache behavior and showed that
the miss rate varies be tween programs. Using a sample of 20 pro grams (each with
3 million references—an incredible number for that time), Gibson analyzed the
effectiveness of caches using average memory access time as the metric. Conti,
Gibson, and Pitkowsky described the resulting per formance of the 360/85 in the
fi rst paper to use the term cache in 1968. Since this early work, it has become clear
that caches are one of the most important ideas not only in computer archi tecture
but in software systems as well. The idea of caching has found applica tions in
operating systems, networking systems, databases, and compilers, to name a few.

 5.13 Historical Perspective and Further Reading 5.13-7

There are thousands of papers on the topic of caching, and it contin ues to be a
popular area of research.

One of the fi rst papers on nonblocking caches was by Kroft in 1981, who may
have coined the term. He later explained that he was the fi rst to design a computer
with a cache at Control Data Corporation, and when using old concepts for new
mechanisms, he hit upon the idea of allowing his two-ported cache to continue to
service other accesses on a miss.

Multilevel caches were the inevitable resolution to the lack of improvement in
main memory latency and the higher clock rates of microprocessors. Only those
in the fi eld for a while are surprised by the size of some second- or third-level
caches, as they are larger than main memories of past machines. The other sur-
prise is that the number of levels is continuously increasing, even on a single-chip
microprocessor.

Protection Mechanisms

Architectural support for protection has varied greatly over the past 20 years. In
early computers, before virtual memory, protection was very simple at best. In the
1960s, more elaborate mechanisms that supported different protection levels (called
rings) were invented. In the late 1970s and early 1980s, very elaborate mechanisms
for protection were devised and later built; these mechanisms sup ported a variety
of powerful protection schemes that allowed controlled instances of sharing, in
such a way that a process could share data while controlling exactly what was done
to the data. The most powerful method, called capabilities, cre ated a data object
that described the access rights to some portion of memory. These capabilities
could then be passed to other processes, thus granting access to the object described
by the capability. Supporting this sophisticated protection mechanism was both
complex and costly, because creation, copying, and manipu lation of capabilities
required a combination of operating system and hardware support. Recent com-
puters all support a simpler protection scheme based on vir tual memory, similar to
that discussed in Section 5.4. Given current concerns about computer security due
to the costs of worms and viruses, perhaps we will see a renaissance in protection
research, potentially renewing interest in 20-year-old publications.

As mentioned in the text, system virtual machines were pioneered at IBM as part
of its investigation into virtual memory. IBM’s fi rst computer with virtual memory
was the IBM 360/67, introduced in 1967. IBM researchers wrote the program
CP-67, which created the illusion of several independent 360 computers. They then
wrote an interactive, single-user operating system called CMS that ran on these
virtual machines. CP-67 led to the product VM/370, and today IBM sells z/VM for
its mainframe computers.

5.13-8 5.13 Historical Perspective and Further Reading

A Brief History of Modern Operating Systems

MIT developed the fi rst timesharing system, CTSS (Compatible Time-Sharing
System), in 1961. John McCarthy is generally given credit for the idea of time-
sharing, but Fernando Corbato was the systems person who built it. CTSS allowed
three people to share a machine, and its response time of minutes or sec onds was
a dramatic improvement over the batch processing system it replaced. Moreover, it
demonstrated the value of interactive computing.

Flush with the success of their fi rst system, this group launched into their
sec ond system, MULTICS (Multiplexed Information and Computing Service).
They included many innovations, such as strong protection, controlled sharing,
and dynamic libraries. However, it suffered from the “second system effect.” Fred
Brooks, Jr. described the second system effect in his classic book about lessons
learned from developing an operating system for the IBM mainframe, The Mythical
Man Month:

When one is designing the successor to a relatively small, elegant, and suc cessful
system, there is a tendency to become grandiose in one’s success and design an
elephantine feature-laden monstrosity.

MULTICS took sharing to a logical extreme to discover the issues, including that
it was too extreme. MIT, General Electric, and later Bell Labs all tried to build an
economical and useful system. Despite a great deal of time and money, they did
not succeed.

Berkeley was building their own timesharing system, Cal TSS. The people leading
that project included Peter Deutsch, Butler Lampson, Chuck Thacker, and Ken
Thompson. They added paging virtual memory hardware to an SDS 920 and wrote
an operating system for it. SDS sold this computer as the SDS-930, and it was the
fi rst commercially available timesharing system to have operational hard ware and
software. Thompson graduated and joined Bell Labs. The others founded Berkeley
Computer Corporation (BCC), with the goal of selling time-sharing hardware and
software. We’ll pick up BCC later in the story, but for now let’s follow Thompson.

At Bell Labs in 1971, Thompson led the development of a simple timesharing
system that had some of the good ideas of MULTICS but left out many of the
complex features. To demonstrate the contrast, it was fi rst called UNICS. As they
were joined by others at Bell Labs who had been burned from the MULTICS
experience, it was renamed UNIX, with the x coming from Phoenix, the legendary
bird that rose from the ashes.

Their result was the most elegant operating system ever built. Forced to live in
the 16-bit address space of the DEC minicomputers, it had an amazing amount
of functionality per line of code. Major contributions were pipes, a uniform fi le

 5.13 Historical Perspective and Further Reading 5.13-9

sys tem, a uniform process model, and the shell user interface that allowed users to
connect programs together using pipes and fi les.

Dennis Ritchie joined the UNIX team in 1973 from MIT, where he had experi-
ence in MULTICS, which was written in a high-level language. Like prior operat ing
systems, UNIX had been written in assembly language. Ritchie designed a language
for system implementation called C, and it was used to make UNIX porta ble.

Between 1971 and 1976, Bell released six editions of the UNIX timesharing
system. Thompson took a sabbatical at his alma mater and brought UNIX with
him. Berkeley and many other universities began to use UNIX on the popular
PDP-11 minicomputer.

When DEC announced the VAX, a 32-bit virtual address successor to the PDP-11,
the question arose as to what operating system should be run. UNIX became the fi rst
operating system to port to a different computer when it was ported to the VAX.

Students at Berkeley had one of the fi rst VAXes, and they were soon adding
features to UNIX for the VAX, such as paging and a very effi cient implementation of
the TCP/IP protocol (see Section 6.11). The Berkeley implementation of TCP/IP
was notable not just because it was fast. It was essentially the only implementa-
tion of TCP/IP for years, since early implementations in most other operating sys-
tems consisted of copying the Berkeley code verbatim, with minimal changes to
integrate into the local system.

The Advanced Research Project Agency (ARPA), which funded computer science
research, asked a Stanford professor, Forrest Basket, to recommend which system
the academic community should use: the DEC operating system VMS, led by David
Cutler, or the Berkeley version of UNIX, led by a graduate student named Bill Joy.
He recommended the latter, and Berkeley UNIX soon became the academic stan-
dard bearer.

The Berkeley Software Distribution (BSD) of UNIX, fi rst released in 1978, was
essentially one of the fi rst open source movements. The sources were shipped with
the tapes, and systems developers around the world learned their craft by studying
the UNIX code.

BSD was also the fi rst split of UNIX, because AT&T Bell Labs continued to
develop UNIX on its own. This eventually led to a forest of UNIXes, as each com-
pany compiled the UNIX source code for their architecture. Bill Joy graduated
from Berkeley and helped found Sun Microsystems, so naturally Sun OS was based
on BSD UNIX. Among the many UNIX fl avors were Santa Cruz Operation UNIX,
HP-UX, and IBM’s AIX. AT&T and Sun attempted to unify UNIX by strik ing a deal
whereby AT&T and Sun would combine forces and jointly develop AT&T UNIX.
This led to an adverse reaction from HP, IBM, and others, because they did not want

5.13-10 5.13 Historical Perspective and Further Reading

a competitor supplying their code, so they created the Open Source Foundation as
a competing organization.

In addition to the UNIX variants from companies, public domain versions also
proliferated. The BSD team at Berkeley rewrote substantial portions of UNIX so
that they could distribute it without needing a license from AT&T. This eventually
led to a lawsuit, which Berkeley won. BSD UNIX soon split into FreeBSD, NetBSD,
and OpenBSD, provided by competing camps of developers. Apple’s cur rent
operating system, OS X, is based on Free BSD.

Let’s go back to Berkeley Computer Corporation. Alas, this effort was not com-
mercially viable. About the same time as BCC was getting in trouble, Xerox hired
Robert Taylor to build the computer science division of the new Xerox Palo Alto
Research Center (PARC) in 1970. He had just returned from a tour of duty at ARPA,
where he had funded the Berkeley research. He recruited Deutsch, Lamp son, and
Thacker from BCC to form the core of PARC’s team: 11 of the fi rst 20 employees
were from BCC, and they decided to build small computers for individuals rather
than large computers for groups. This fi rst personal computer, called the Alto, was
built from the same technology as minicomputers, but it had a key board, mouse,
graphical display, and windows. It popularized windows and led to many inven-
tions, including client-server computing, the Ethernet, and print serv ers. It directly
inspired the Macintosh, which was the successor to the popular Apple II.

IBM had long been interested in selling to the home, so the success of the Apple
II led IBM to start a competing project. In contrast to its tradition, for this project
IBM designed everything from components outside of the company. They selected
the new 16-bit microprocessor from Intel, the 8086. (To lower costs, they started
with the version with the 8-bit bus, called the 8088.) They visited Microsoft to
see if this small company would be willing to sell their popular Basic interpreter
and asked for recommendations for an operating system. Gates volunteered that
Microsoft could deliver both an interpreter and an operating sys tem, as long as they
were paid a royalty fee of between $10 and $50 for each copy rather than a fl at fee.
IBM agreed, provided Microsoft could meet their deadlines. Microsoft didn’t have
an operating system, nor the time and resources to build one, but Gates knew that
a Seattle company had developed an operating system for the Intel 8086. Microsoft
purchased QDOS (Quick and Dirty Operating Sys tem) for $15,000, made a small
change and relabeled it MS-DOS. MS-DOS was a simple operating system without
any modern features—no protection, no pro cesses, and no virtual memory—in
part because they believed it wasn’t necessary for a personal computer.

Announced in 1980, the IBM PC became a tremendous success for IBM and the
companies it relied upon. Microsoft sold 500,000 copies of MS-DOS by 1983, and
the $10 million income allowed Microsoft to start new software projects.

 5.13 Historical Perspective and Further Reading 5.13-11

After seeing a version of the Macintosh under development, Microsoft hired
some people from PARC to lead its reply. The Macintosh was announced in 1984,
and Windows was available on PCs the following year. It was originally an appli-
cation that ran on top of DOS, but was later integrated with DOS and renamed
Windows 2.0. Microsoft hired Cutler from DEC to lead the development of
Windows NT, a new operating system. NT was a modern operating system with
pro tection, processors, and so on and has much in common with DEC’s VMS.
Today’s PC operating systems are more sophisticated than any of the timesharing
systems of 20 years ago, yet they still suffer from the need to maintain compati bility
with the crippled fi rst PC operating systems such as MS-DOS.

The popularity of the PC led to a desire for a UNIX that ran on it. Many tried,
but the most successful was written from scratch in 1991 by Linus Torvalds. In
addition to making the source code available, like BSD, he allowed everyone to
make changes and submit them for inclusion in his next release. Linux popular ized
open source development as we know it today, with such software getting hundreds
of volunteers to test releases and add new features.

Many people in this story won awards for their roles in the development of
modern operating systems. McCarthy received an ACM Turing Award in 1971 in
part for his contributions to timesharing. In 1983, Thompson and Ritchie received
it for UNIX. The announcement said that “the genius of the UNIX system is its
framework, which enables programmers to stand on the work of others.” In 1990,
Corbato received the Turing Award for his contributions to CTSS and MULTICS.
Two years later, Lampson won it in part for his work on personal computing and
operating systems.

Further Reading
Cantin, J. F. and M. D. Hill [2001]. “Cache performance for selected SPEC CPU2000 benchmarks,”
 SIGARCH Computer Architecture News, 29:4 þ (September), 13–18.

A reference paper of cache miss rates for many cache sizes for the SPEC2000 benchmarks.

Conti, C., D. H. Gibson, and S. H. Pitowsky [1968]. “Structural aspects of the System/360 Model 85, part I:
General organization,” IBM Systems J. 7:1, 2–14.

A classic paper that describes the fi rst commercial computer to use a cache and its resulting performance.

Hennessy, J. and D. Patterson [2003]. Chapter 5 in Computer Architecture: A Quantitative Approach, third
 edition, Morgan Kaufmann Publishers, San Francisco.

For more in-depth coverage of a variety of topics including protection, cache performance of out-of-order
 processors, virtually addressed caches, multilevel caches, compiler optimizations, additional latency toler ance
mechanisms, and cache coherency.

5.13-12 5.13 Historical Perspective and Further Reading

Kilburn, T., D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner [1962]. “One-level storage system,” IRE
 Transactions on Electronic Computers EC-11 (April), 223–35. Also appears in D. P. Siewiorek, C. G. Bell, and
A. Newell [1982], Computer Structures: Principles and Examples, McGraw-Hill, New York, 135–48.

This classic paper is the fi rst proposal for virtual memory.

LaMarca, A. and R. E. Ladner [1996]. “The infl uence of caches on the performance of heaps,” ACM J. of
 Experimental Algorithmics, Vol. 1.

This paper shows the difference between complexity analysis of an algorithm, instruction count perfor mance, and
memory hierarchy for four sorting algorithms.

McCalpin, J. D. [1995]. “STREAM: Sustainable Memory Bandwidth in High Performance Computers,”
www.cs.virginia.edu/stream.

A widely used microbenchmark that measures the performance of the memory system behind the caches.

Przybylski, S. A. [1990]. Cache and Memory Hierarchy Design: A Performance-Directed Approach, Morgan
Kaufmann Publishers, San Francisco.

A thorough exploration of multilevel memory hierarchies and their performance.

Ritchie, D. [1984]. “The evolution of the UNIX time-sharing system,” AT& T Bell Laboratories Technical
 Journal, 1984, 1577–93.

The history of UNIX from one of its inventors.

Ritchie, D. M. and K. Thompson [1978]. “The UNIX time-sharing system,” Bell System Technical Jour nal
 (August), 1991–2019.

A paper describing the most elegant operating system ever invented.

Silberschatz, A., P. Galvin, and G. Grange [2003]. Operating System Concepts, sixth edition, Addison-Wesley,
Reading, MA.

An operating systems textbook with a thorough discussion of virtual memory, processes and process man agement,
and protection issues.

Smith, A. J. [1982]. “Cache memories,” Computing Surveys 14:3 (September), 473–530.

The classic survey paper on caches. This paper defi ned the terminology for the fi eld and has served as a reference
for many computer designers.

Smith, D. K. and R.C. Alexander. [1988]. Fumbling the Future: How Xerox Invented, Then Ignored, the First
Personal Computer, Morrow, New York.

A popular book that explains the role of Xerox PARC in laying the foundation for today’s computing, but which
Xerox did not substantially benefi t from.

Tanenbaum, A. [2001]. Modern Operating Systems, second edition, Upper Saddle River, Prentice Hall, NJ.

An operating system textbook with a good discussion of virtual memory.

Wilkes, M. [1965]. “Slave memories and dynamic storage allocation,” IEEE Trans. Electronic Computers
EC-14:2 (April), 270–71.

The fi rst classic paper on caches.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Albertus-ExtraBold
 /Albertus-Medium
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /AllegroBT-Regular
 /AntiqueOlive
 /AntiqueOlive-Bold
 /AntiqueOlive-Compact
 /AntiqueOlive-Italic
 /AntiqueOlive-Roman
 /Apple-Chancery
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /BabyKruffy
 /BankGothicBT-Medium
 /BenguiatITCbyBT-Bold
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BremenBT-Bold
 /Candid
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CGOmega
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGTimes
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /Chicago
 /Chick
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Condensed-Bold
 /Clarendon-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CooperBlack-Italic
 /CopperplateGothicBT-Bold
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /Coronet
 /Coronet-Regular
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Croobie
 /English111VivaceBT-Regular
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldExtendedTwo
 /Eurostile-ExtendedTwo
 /Fat
 /Fences
 /FencesPlain
 /FranklinGothic-Book
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Freshbot
 /Frosty
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Book
 /Garamond-BookItalic
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Gautami
 /Geneva
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /Goudy-ExtraBold
 /GoudyHandtooledBT-Regular
 /Goudy-Italic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Light
 /Helvetica-LightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HoeflerText-Black
 /HoeflerText-BlackItalic
 /HoeflerText-Italic
 /HoeflerText-Ornaments
 /HoeflerText-Regular
 /Humanist521BT-Bold
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Roman
 /Impact
 /Jenkinsv20
 /Jenkinsv20Thik
 /JoannaMT
 /JoannaMT-Bold
 /JoannaMT-BoldItalic
 /JoannaMT-Italic
 /Jokewood
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /Kartika
 /Latha
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Italic
 /LetterGothic-Slanted
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LucidaConsole
 /LucidaSansUnicode
 /Mangal-Regular
 /Marigold
 /MathExt
 /Meridien-Bold
 /Meridien-BoldItalic
 /Meridien-Italic
 /Meridien-Medium
 /Meridien-MediumItalic
 /Meridien-Roman
 /MicrosoftSansSerif
 /Minion-Black
 /Minion-Bold
 /Minion-BoldItalic
 /Minion-DisplayItalic
 /Minion-DisplayRegular
 /Minion-Italic
 /Minion-Regular
 /Minion-Semibold
 /Minion-SemiboldItalic
 /Monaco
 /MonaLisa-Recut
 /MonotypeCorsiva
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-BdWeb
 /Myriad-CnItWeb
 /Myriad-CnWeb
 /Myriad-ItWeb
 /Myriad-Web
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewYork
 /Optima
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-Italic
 /Oxford
 /OzHandicraftBT-Roman
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Poornut
 /Porkys
 /PorkysHeavy
 /PosterBodoniBT-Roman
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RefSpecialty
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Shruti
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Staccato222BT-Regular
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /StoneSerif
 /StoneSerif-Bold
 /StoneSerif-BoldItalic
 /StoneSerif-Italic
 /StoneSerif-Semibold
 /StoneSerif-SemiboldItalic
 /Swiss911BT-ExtraCompressed
 /Sylfaen
 /Symbol
 /SymbolMT
 /Taffy
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TypoUprightBT-Regular
 /Univers
 /Univers-Black
 /Univers-BlackOblique
 /Univers-Bold
 /Univers-BoldExt
 /Univers-BoldExtObl
 /Univers-BoldItalic
 /Univers-BoldOblique
 /Univers-Condensed
 /Univers-CondensedBold
 /Univers-Condensed-Bold
 /Univers-Condensed-BoldItalic
 /Univers-CondensedBoldOblique
 /Univers-Condensed-Medium
 /Univers-Condensed-MediumItalic
 /Univers-CondensedOblique
 /Univers-Extended
 /Univers-ExtendedObl
 /Univers-Light
 /Univers-LightOblique
 /Univers-Medium
 /Univers-MediumItalic
 /Univers-Oblique
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZurichBT-RomanExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [504.000 720.000]
>> setpagedevice

