
2.20   Historical Perspective and Further 
Reading

This section surveys the history of instruction set architectures over time, and we give 
a short history of programming languages and compilers. ISAs include accumulator 
architectures, general-purpose register architectures, stack architectures, and a 
brief history of ARM and the x86. We also review the controversial subjects of 
high-level-language computer architectures and reduced instruction set computer 
architectures. The history of programming languages includes Fortran, Lisp, Algol, 
C, Cobol, Pascal, Simula, Smalltalk, C++, and Java, and the history of compilers 
includes the key milestones and the pioneers who achieved them.

Accumulator Architectures

Hardware was precious in the earliest stored-program comput ers. Consequently, 
computer pioneers could not afford the num ber of registers found in today’s 
 architectures. In fact, these architectures had a single register for arithmetic instruc-
tions. Since all operations would accumulate in a single register, it was called the 
accumulator, and this style of instruction set is given the same name. For example, 
EDSAC in 1949 had a single accu mulator.

The three-operand format of MIPS suggests that a single regis ter is at least two 
registers shy of our needs. Having the accumu lator as both a source operand and the 
destination of the operation fi lls part of the shortfall, but it still leaves us one operand 
short. That fi nal operand is found in memory. Accumulator architectures have the 
memory-based operand-addressing mode suggested ear lier. It follows that the add 
instruction of an accumulator instruc tion set would look like this:

add 200

This instruction means add the accumulator to the word in mem ory at address 200 
and place the sum back into the accumulator. No registers are specifi ed because the 
accumulator is known to be both a source and a destination of the operation.

The next step in the evolution of instruction sets was the addi tion of registers 
dedicated to specifi c operations. Hence, regis ters might be included to act as indices 
for array references in data transfer instructions, to act as separate accumulators for 
multiply or divide instructions, and to serve as the top-of-stack pointer. Perhaps 
the best-known example of this style of instruction set is found in the Intel 8086, 
the computer at the core of the IBM Personal Computer. This style of instruction 
set is labeled extended accumulator, dedicated register, or special- purpose register. 
Like the single-register accumulator architec tures, one operand may be in memory 
for arithmetic instruc tions. Like the MIPS architecture, however, there are also 
instructions where all the operands are registers.

accumulator: Archaic term 
for register. On-line use of it 
as a synonym for  “register” 
is a fairly reliable indication 
that the user has been 
around quite a while.

Eric Raymond, The New 
Hacker’s Dictionary, 1991
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General-Purpose Register Architectures

The generalization of the dedicated-register architecture allows all the registers 
to be used for any purpose, hence the name gen eral-purpose register. MIPS is an 
example of a general-purpose register architecture. This style of instruction set may 
be fur ther divided into those that allow one operand to be in memory (as found 
in accumulator architectures), called a register-memory architecture, and those that 
demand that operands always be in registers, called either a load-store or a register-
register architecture. Figure 2.20.1 shows a history of the number of reg isters in 
some popular computers.

The fi rst load-store architecture was the CDC 6600 in 1963, considered by 
many to be the fi rst supercomputer. ARM and MIPS are more recent examples of a 
load-store architecture. 

load-store architecture 
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opera tions are between registers 
and data mem ory may only be 
accessed via loads or stores.
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Machine
Number of

 general-purpose registers Architectural style Year

EDSAC 01 Accumulator 1949

IBM 701 01 Accumulator 1953

CDC 6600 08 Load-store 1963

IBM 360 16 Register-memory 1964

DEC PDP-8 01 Accumulator 1965

DEC PDP-11 08 Register-memory 1970

Intel 8008 01 Accumulator 1972

Motorola 6800 02 Accumulator 1974

DEC VAX 16 Register-memory, memory-memory 1977

Intel 8086 01 Extended accumulator 1978

Motorola 68000 16 Register-memory 1980

Intel 80386 08 Register-memory 1985

ARM 16 Load-store 1985

MIPS 32 Load-store 1985

HP PA-RISC 32 Load-store 1986

SPARC 32 Load-store 1987

PowerPC 32 Load-store 1992

DEC Alpha 32 Load-store 1992

HP/Intel IA-64 128 Load-store 2001

AMD64 (EMT64) 16 Register-memory 2003

FIGURE 2.20.1 The number of general-purpose registers in popular architectures over 
the years.

The 80386 is Intel’s attempt to transform the 8086 into a gen eral-purpose  register-
memory instruction set. Perhaps the best-known register-memory instruction set is 
the IBM 360 architec ture, fi rst announced in 1964. This instruction set is still at the 
core of IBM’s mainframe computers—responsible for a large part of the business of 
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the largest computer company in the world.  Register-memory architectures were the 
most popular in the 1960s and the fi rst half of the 1970s. 

Digital Equipment Corporation’s VAX architecture took mem ory operands one 
step further in 1977. It allowed an instruction to use any combination of registers 
and memory operands. A style of architecture in which all operands can be in 
memory is called memory-memory. (In truth the VAX instruction set, like almost 
all other instruction sets since the IBM 360, is a hybrid, since it also has general-
 purpose registers.)

Although MIPS has a single add instruction with 32-bit oper ands, the Intel 
x86 has many versions of a 32-bit add to specify whether an operand is in 
memory or is in a register. In addition, the memory operand can be accessed 
with more than seven addressing modes. This combination of address modes 
and reg ister-memory operands means that there are dozens of vari ants of an 
x86 add instruction. Clearly, this variability makes x86 implementations more 
challenging.

Compact Code and Stack Architectures

When memory is scarce, it is also important to keep programs small, so architectures 
like the Intel x86, IBM 360, and VAX had variable-length instructions, both to match 
the varying operand specifi cations and to minimize code size. Intel x86 instructions 
are from 1 to 17 bytes long; IBM 360 instructions are 2, 4, or 6 bytes long; and VAX 
instruction lengths are anywhere from 1 to 54 bytes. If instruction memory space 
becomes precious once again, such techniques could return to popularity. 

In the 1960s, a few companies followed a radical approach to instruction sets. 
In the belief that it was too hard for compilers to utilize registers effec tively, 
these companies abandoned reg isters altogether! Instruction sets were based on 
a stack model of execution, like that found in the older Hewlett- Packard hand-
held calculators. Operands are pushed on the stack from mem  ory or popped 
off the stack into memory. Operations take their operands from the stack and 
then place the result back onto the stack. In addition to simplifying compilers 
by eliminating regis ter allocation, stack architectures lent themselves to compact 
instruction encoding, thereby removing memory size as an excuse not to program 
in high-level languages. 

Memory space was perceived to be precious again for Java, both because memory 
space is limited to keep costs low in embedded applications and because programs 
may be downloaded over the Internet or phone lines as Java applets, and smaller 
programs take less time to transmit. Hence, compact instruction encoding was 
desirable for Java bytecodes.
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High-Level-Language Computer Architectures

In the 1960s, systems software was rarely written in high-level languages. For example, 
virtually every commercial operating system before UNIX was programmed in 
assembly language, and more recently even OS/2 was originally programmed at that 
same low level. Some people blamed the code density of the instruction sets, rather 
than the programming languages and the compiler technology. 

Hence, a architecture design philosophy called high-level-lan guage computer 
 architecture was advocated, with the goal of making the hardware more like the 
programming languages. More effi cient programming languages and compilers, 
plus expanding memory, doomed this movement to a historical footnote. The 
Burroughs B5000 was the commercial fountainhead of this phi losophy, but today 
there is no signifi cant commercial descendent of this 1960s radical.

Reduced Instruction Set Computer Architectures

This language-oriented design philosophy was replaced in the 1980s by RISC 
(reduced instruction set computer). Improve ments in programming languages, com-
piler technology, and mem ory cost meant that less programming was being done 
at the assembly level, so instruction sets could be measured by how well compilers 
used them, as opposed to how well assembly lan guage programmers used them.

Virtually all new instruction sets since 1982 have followed this RISC philosophy 
of fi xed instruction lengths, load-store instruction sets, limited addressing modes, 
and limited opera tions. ARM, Hitachi SH, IBM PowerPC, MIPS, and Sun SPARC 
are all examples of RISC architectures.

A Brief History of the ARM

ARM started as the processor for the Acorn computer, hence its original name 
of Acorn RISC Machine. Its architecture was infl u enced by the Berkeley RISC 
papers.

One of the most important early applications was emulation of the AM 6502, 
a 16-bit microprocessor. This emulation was to provide most of the software for 
the Acorn computer. As the 6502 had a variable length instruction set that was 
a multiple of bytes, 6502 emulation helps explain the emphasis on shifting and 
masking in the ARM instruction set. 

Its popularity as a low-power embedded computer began with its selection as 
the processor for the ill-fated Apple Newton per sonal digital assistant. Although 
the Newton was not as popular as Apple hoped, Apple’s blessing gave visibility 
to ARM, and it subsequently caught on in several markets, including cell phones. 
Unlike the Newton experience, the extraordinary success of cell phones explains 
why three billion ARM processors were shipped in 2008.



A Brief History of the x86

The ancestors of the x86 were the fi rst microprocessors, pro duced starting in 1972. 
The Intel 4004 and 8008 were extremely simple 4-bit and 8-bit accumulator-style 
architectures. Morse, et al. [1980] describe the evo lution of the 8086 from the 
8080 in the late 1970s as an attempt to pro vide a 16-bit architecture with better 
throughput. At that time, almost all programming for microprocessors was done 
in assembly language—both memory and compilers were in short supply. Intel 
wanted to keep its base of 8080 users, so the 8086 was designed to be “compatible” 
with the 8080. The 8086 was never object-code compatible with the 8080, but the 
architectures were close enough that transla tion of assembly language programs 
could be done automatically. 

In early 1980, IBM selected a version of the 8086 with an 8-bit external bus, 
called the 8088, for use in the IBM PC. They chose the 8-bit version to reduce the 
cost of the architecture. This choice, together with the tremendous success of the 
IBM PC, has made the 8086 architecture ubiqui tous. The success of the IBM PC was 
due in part because IBM opened the architecture of the PC and enabled the PC-
clone industry to fl ourish. As dis cussed in Section 2.17, the 80286, 80386, 80486, 
Pentium, Pentium Pro, Pentium II, Pentium III, and Pentium 4 have extended the 
architecture and provided a series of performance enhancements.

Although the 68000 was chosen for the Macintosh, the Mac was never as 
pervasive as the PC, partly because Apple did not allow Mac clones based on the 
68000, and the 68000 did not acquire the same software following that the 8086 
enjoys. The Motorola 68000 may have been more signifi cant technically than the 
8086, but the impact of IBM’s selection and open architecture strategy dominated 
the technical advantages of the 68000 in the market. 

Some argue that the inelegance of the x86 instruction set is unavoidable, the 
price that must be paid for rampant success by any architecture. We reject that 
notion. Obviously, no successful architecture can jettison features that were 
added in previous implementations, and over time, some features may be seen as 
undesirable. The awkwardness of the x86 begins at its core with the 8086 instruction 
set and was exacerbated by the architec turally inconsistent expansions found in the 
8087, 80286, 80386, MMX, SSE, SSE2, SSE3, SSE4, and AMD64 (EM64T). 

A counterexample is the IBM 360/370 architecture, which is much older than 
the x86. It dominates the mainframe market just as the x86 dominates the PC 
market. Due undoubtedly to a better base and more compatible enhancements, 
this instruction set makes much more sense than the x86 40 years after its fi rst 
implementation. 

Extending the x86 to 64-bit addressing means the architecture could last for 
several more decades. Instruction set anthropolo gists of the future will peel off layer 
after layer from such architectures until they uncover artifacts from the fi rst micro-
processor. Given such a fi nd, how will they judge today’s com puter architecture?
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A Brief History of Programming Languages

In 1954, John Backus led a team at IBM to create a more natural notation for 
scientifi c programming. The goal of Fortran, for “FORmula TRANslator,” was 
to reduce the time to develop pro grams. Fortran included many ideas found in 
 programming lan guages today, including assignment statements, expressions, typed 
variables, loops, and arrays. The development of the lan guage and the compiler 
went hand in hand. This language became a standard that has evolved over time 
to improve programmer productivity and program portability. The evolutionary 
steps are Fortran I, II, IV, 77, and 90.

Fortran was developed for IBM’s second commercial com puter, the 704, which 
was also the cradle of another important programming language: Lisp. John 
McCarthy invented the “LISt Processing” language in 1958. Its mantra is that 
programming can be considered as manipulating lists, so the language contains 
operations to follow links and to compose new lists from old ones. This list notation 
is used for the code as well as the data, so mod ifying or composing Lisp programs is 
common. The big contribu tion was dynamic data structures and, hence, pointers. 
Given that its inventor was a pioneer in artifi cial intelligence, Lisp became pop-
ular in the AI community. Lisp has no type declarations, and Lisp traditionally 
reclaims storage automatically via built-in garbage collection. Lisp was originally 
interpreted, although compilers were later developed for it.

Fortran inspired the international community to invent a pro gramming language 
that was more natural to express algorithms than Fortran, with less emphasis on 
coding. This language became Algol, for “ALGOrithmic Language.” Like Fortran, it 
included type declarations, but it added recursive procedure calls, nested if-then-else 
statements, while loops, begin-end statements to structure code, and call-by-name. 
Algol-60 became the classic language for academics to teach programming in the 
1960s.

Although engineers, AI researchers, and computer scientists had their own 
programming languages, the same could not be said for business data processing. 
Cobol, for “COmmon Business-Ori ented Language,” was developed as a standard for 
this purpose about the same time as Algol-60. Cobol was created to be easy to read, 
so it follows English vocabulary and punctuation. It added records to programming 
languages, and separated description of data from description of code.

Niklaus Wirth was a member of the Algol-68 committee, which was supposed 
to update Algol-60. He was bothered by the com plexity of the result, and so he 
wrote a minority report to show that a programming language could combine 
the algorithmic power of Algol-60 with the record structure from Cobol and be 
simple to understand, simple to implement, yet still powerful. This minority report 
became Pascal. It was fi rst implemented with an interpreter and a set of Pascal 
bytecodes. The ease of implemen tation led to its being widely deployed, much 
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more than Algol-68, and it soon replaced Algol-60 as the most popular language 
for academics to teach programming.

In the same period, Dennis Ritchie invented the C programming language to 
use in building UNIX. Its inventors say it is not a “very high level” programming 
language or a big one, and it is not aimed at a particular application. Given its 
birthplace, it was very good at systems programming, and the UNIX operating 
sys tem and C compiler were written in C. UNIX’s popularity helped spur C’s 
popularity.

The concept of object orientation is fi rst captured in Simula-67, a simulation 
language successor to Algol-60. Invented by Ole-Johan Dahl and Kristen 
Nygaard at the University of Oslo in 1967, it introduced objects, classes, and 
inheritance.

Object orientation proved to be a powerful idea. It led Alan Kay and others at 
Xerox Palo Alto Research Center to invent Small talk in the 1970s. Smalltalk-80 
married the typeless variables and garbage collection from Lisp and the object 
orientation of Simula-67. It relied on interpretation that was defi ned by a Smalltalk 
virtual machine with a Smalltalk bytecode instruction set. Kay and his colleagues 
argued that processors were getting faster, and that we must eventually be willing 
to sacrifi ce some performance to improve program development. Another example 
was CLU, which demonstrated that an object-oriented language could be defi ned 
that allowed compile-time type checking. Sim ula-67 also inspired Bjarne Stroustrup 
of Bell Labs to develop an object-oriented version of C called C++ in the 1980s. 
C++ became widely used in industry. 

Dissatisfi ed with C++, a group at Sun led by James Gosling invented Oak in the 
early 1990s. It was invented as an object-oriented C dialect for embedded devices 
as part of a major Sun project. To make it portable, it was interpreted and had its 
own virtual machine and bytecode instruction set. Since it was a new language, 
it had a more elegant object-oriented design than C++ and was much easier to 
learn and compile than Smalltalk-80. Since Sun’s embedded project failed, we 
might never have heard of it had someone not made the connection between Oak 
and pro grammable browsers for the World Wide Web. It was rechris tened Java, 
and in 1995, Netscape announced that it would be shipping with its browser. It 
soon became extraordinarily popu lar. Java has the rare distinction of becoming 
the standard lan guage for new business data processing applications and the most 
popular language for academics to teach programming. Java and languages like 
it encourage reuse of code, and hence program mers make heavy use of libraries, 
whereas in the past they were more likely to write everything from scratch.
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A Brief History of Compilers

Backus and his group were very concerned that Fortran would be unsuccessful 
if skeptics found examples where the Fortran ver sion ran at half the speed of the 
equivalent assembly language program. Their success with one of the fi rst compilers 
created a beachhead that many others followed.

Early compilers were ad hoc programs that performed the steps described 
in Section 2.15 on the CD. These ad hoc approaches were replaced with a solid 
theoretical  foundation for each of these steps. Each time the theory was established, 
a tool was created based on that theory that automated the creation of that step.

The theoretical roots underlying scanning and parsing derive from automata 
theory, and the relationship between languages and automata was known early. The 
scanning task corresponds to rec ognition of a language accepted by a fi nite-state 
automata, and parsing corresponds to recognition of a language by a push-down 
automata (basically an automata with a stack). Languages are described by grammars, 
which are a set of rules that tell how any legal program can be generated.

The scanning pass of a compiler was well understood early, but parsing is harder. 
The earliest parsers use precedence tech niques, which derived from the structure 
of arithmetic state ments, and were then generalized. The great breakthrough in 
modern parsing was made by Donald Knuth in the invention of LR-parsing, which 
codifi ed the two key steps in the parsing tech nique, pushing a token on the stack 
or reducing a set of tokens on the stack using a grammar rule. The strong theory 
formulation for scanning and parsing led to the development of automated tools 
for compiler constructions, such as lex and yacc, the tools developed as part of 
UNIX.

Optimizations occurred in many compilers, and it is harder to determine the 
fi rst examples in most cases. However, Victor Vyssotsky did the fi rst papers on data 
fl ow analysis in 1963, and William McKeeman is generally credited with the fi rst 
peephole optimizer in 1965. The group at IBM, including John Cocke and Fran 
Allan, developed many of the early optimization concepts, as well as defi ning and 
extending the concepts of fl ow analysis. Important contributions were also made 
by Al Aho and Jeff Ull man. 

One of the biggest challenges for optimization was register allocation. It was so 
diffi cult that some architects used stack architectures just to avoid the problem. 
The breakthrough came when researchers working on compilers for the 801, an 
early RISC architecture, recognized that coloring a graph with a mini mum number 
of colors was equivalent to allocating a fi xed num ber of registers to the unlimited 
number of virtual registers used in intermediate forms.

Compilers also played an important role in the open source movement. Richard 
Stallman’s self-appointed mission was to make a public domain version of UNIX. 
He built the GNU C Compiler (gcc) as an open source compiler in 1987. It soon 
was ported to many architectures, and is used in many systems today.
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Further Reading
Bayko, J. [1996]. “Great microprocessors of the past and present,” search for it on the www.jbayko.sasktel
website.net/cpu.html

A personal view of the history of both representative and unusual microprocessors, from the Intel 4004 to the 
 Patriot Scientifi c ShBoom!

Kane, G. and J. Heinrich [1992]. MIPS RISC Architecture, Prentice Hall, Englewood Cliffs, NJ.

This book describes the MIPS architecture in greater detail than Appendix A.

Levy, H. and R. Eckhouse [1989]. Computer Programming and Architecture: The VAX, Digital Press, Boston.

This book concentrates on the VAX, but also includes descriptions of the Intel 8086, IBM 360, and CDC 6600.

Morse, S., B. Ravenal, S. Mazor, and W. Pohlman [1980]. “Intel microprocessors—8080 to 8086,” Computer 
13:10 (October).

The architecture history of the Intel from the 4004 to the 8086, according to the people who participated in the 
 designs.

Wakerly, J. [1989]. Microcomputer Architecture and Programming, Wiley, New York.

The Motorola 6800 is the main focus of the book, but it covers the Intel 8086, Motor ola 6809, TI 9900, and Zilog 
Z8000.
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