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11-bit Full Adder
The expressions for the sum and carry lead to the following unified implementation:

inin

inin

CBACBA

CBACBASum





BACACBCarry 

This implementation requires 
only two levels of logic 
(ignoring the inverters as 
customary).

Is there an alternative design 
that requires fewer AND/OR 
gates?  If so, how many levels 
does it require?
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2LogiSim Implementation
The previous circuit is easily implemented in LogiSim.
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3LogiSim Analysis Tool
The Project menu contains an option to analyze the circuit.

You may find these useful in verifying the correctness of a circuit.
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41-bit Full Adder as a Module
When building more complex circuits, it is useful to consider sub-circuits as individual, 
"black-box" modules.  For example:

inin

inin

CBACBA

CBACBASum





BACACBCarry 
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5Chaining an 8-bit Adder
An 8-bit adder build by 
chaining 1-bit adders:

This has one serious shortcoming.  The carry bits must ripple
from top to bottom, creating a lag before the result will be 
obtained for the final sum bit and carry.
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6Computing the Carry Bits
Any Boolean function can be computed using two levels of logic gates (not counting 
inverters)… why?

Let's consider the problem of adding two 8-bit operands, A and B, and label the bits of each 
as:

Therefore, it should be possible to compute all of the carry bits needed by the preceding 8-
bit adder using only two levels of logic gates, and that should provide a way to speed up 
the computation of the final result…

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0a a a a a a a a b b b b b b b b

8 7 6 5 4 3 2 1 0c c c c c c c c c

Similarly, label the relevant carry bits as:

7 6 5 4 3 2 1 0s s s s s s s s

And finally, label the sum bits as: Normally 0!
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7Computing the Carry Bits
We can derive some interesting (Boolean) results for the carry bits:

But… this shows c2 as dependent on first knowing c1… which is the ripple carry logic.

However, if we substitute we can show:

1 0 0 0 0 0 0c b c a c a b     

2 1 1 1 1 1 1c b c a c a b     

2 1 1 1 1 1 1

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1

( ) ( )
c b c a c a b

b b c a c a b a b c a c a b a b
a b c a a c a a b b b c b a c b a b a b

     
               
                   

And that gives us c2 in two levels of logic gates… but imagine how complex the formulas 
would be for the higher-order carry bits…
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8Abstraction
Take the original (generalized) carry equation and factor it:

Then, if we rewrite the formula for c2, we have:

1

( )
i i i i i i i

i i i i i

c b c a c a b
a b a b c

      

    

2 1 1 1 1 0 0 0 0 0

1 1 0 0 0

( ) ( ( ) )
( )

c a b a b a b a b c
g p g p c

        

    

where:
1 1 1 1 1 1 and g a b p a b   

We call the latter terms the generate and propagate factors.
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9Generate and Propagate
We can then express the general carry bit formula:

The formula indicates that if gi = 1 then the adder generates a carry-out no matter what the 
value of the carry-in ci might be.

Moreover, if pi = 1, then if there is a carry-in, the adder propagates a carry-out to the next 
position no matter what the generate bit gi might be.

So we can show that:

1i i i ic g p c   

Now, note that we can calculate all the g's and p's in one level of logic from the bits of the 
two operands, so we can calculate these four carry bits in just three levels of logic.

But… this will still get very complex if we try to find higher-order carry bits…

1 0 0 0

2 1 1 1 1 1 0 1 0 0

3 2 2 2 2 2 1 2 1 0 2 1 0 0

4 3 3 3 3 3 2 3 2 1 3 2 1 0 3 2 1 0 0

c g p c
c g p c g p g p p c
c g p c g p g p p g p p p c
c g p c g p g p p g p p p g p p p p c

  

        

      

       
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104-bit Fast-Carry Adder
We can build a 4-bit adder using the fast-carry logic shown on the previous slide:

Computes the four carry bits in 
three levels of logic…

…carry bits are then fed to the 
four adders…

…which then compute the sum 
bits
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11A Higher-level Abstraction
The formulas grow too complex to make this approach ideal for building a practical 
(wider) adder… however, we can consider cascading four of the 4-bit fast-carry adders to 
implement a 16-bit adder.

To do this, we must consider the carry bits that must be generated for each of the 4-bit 
adders.

We can adapt the approach used above to create a higher-level fast-carry logic unit to 
generate those carry bits quickly as well.

See Appendix C.6 in P&H for the details.


