
CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Adders

Computer Organization I

11-bit Full Adder
The expressions for the sum and carry lead to the following unified implementation:

inin

inin

CBACBA

CBACBASum





BACACBCarry 

This implementation requires
only two levels of logic
(ignoring the inverters as
customary).

Is there an alternative design
that requires fewer AND/OR
gates? If so, how many levels
does it require?

CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Adders

Computer Organization I

2LogiSim Implementation
The previous circuit is easily implemented in LogiSim.

CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Adders

Computer Organization I

3LogiSim Analysis Tool
The Project menu contains an option to analyze the circuit.

You may find these useful in verifying the correctness of a circuit.

CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Adders

Computer Organization I

41-bit Full Adder as a Module
When building more complex circuits, it is useful to consider sub-circuits as individual,
"black-box" modules. For example:

inin

inin

CBACBA

CBACBASum





BACACBCarry 

CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Adders

Computer Organization I

5Chaining an 8-bit Adder
An 8-bit adder build by
chaining 1-bit adders:

This has one serious shortcoming. The carry bits must ripple
from top to bottom, creating a lag before the result will be
obtained for the final sum bit and carry.

CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Adders

Computer Organization I

6Computing the Carry Bits
Any Boolean function can be computed using two levels of logic gates (not counting
inverters)… why?

Let's consider the problem of adding two 8-bit operands, A and B, and label the bits of each
as:

Therefore, it should be possible to compute all of the carry bits needed by the preceding 8-
bit adder using only two levels of logic gates, and that should provide a way to speed up
the computation of the final result…

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0a a a a a a a a b b b b b b b b

8 7 6 5 4 3 2 1 0c c c c c c c c c

Similarly, label the relevant carry bits as:

7 6 5 4 3 2 1 0s s s s s s s s

And finally, label the sum bits as: Normally 0!

CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Adders

Computer Organization I

7Computing the Carry Bits
We can derive some interesting (Boolean) results for the carry bits:

But… this shows c2 as dependent on first knowing c1… which is the ripple carry logic.

However, if we substitute we can show:

1 0 0 0 0 0 0c b c a c a b     

2 1 1 1 1 1 1c b c a c a b     

2 1 1 1 1 1 1

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1

() ()
c b c a c a b

b b c a c a b a b c a c a b a b
a b c a a c a a b b b c b a c b a b a b

     
               
                   

And that gives us c2 in two levels of logic gates… but imagine how complex the formulas
would be for the higher-order carry bits…

CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Adders

Computer Organization I

8Abstraction
Take the original (generalized) carry equation and factor it:

Then, if we rewrite the formula for c2, we have:

1

()
i i i i i i i

i i i i i

c b c a c a b
a b a b c

      

    

2 1 1 1 1 0 0 0 0 0

1 1 0 0 0

() (())
()

c a b a b a b a b c
g p g p c

        

    

where:
1 1 1 1 1 1 and g a b p a b   

We call the latter terms the generate and propagate factors.

CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Adders

Computer Organization I

9Generate and Propagate
We can then express the general carry bit formula:

The formula indicates that if gi = 1 then the adder generates a carry-out no matter what the
value of the carry-in ci might be.

Moreover, if pi = 1, then if there is a carry-in, the adder propagates a carry-out to the next
position no matter what the generate bit gi might be.

So we can show that:

1i i i ic g p c   

Now, note that we can calculate all the g's and p's in one level of logic from the bits of the
two operands, so we can calculate these four carry bits in just three levels of logic.

But… this will still get very complex if we try to find higher-order carry bits…

1 0 0 0

2 1 1 1 1 1 0 1 0 0

3 2 2 2 2 2 1 2 1 0 2 1 0 0

4 3 3 3 3 3 2 3 2 1 3 2 1 0 3 2 1 0 0

c g p c
c g p c g p g p p c
c g p c g p g p p g p p p c
c g p c g p g p p g p p p g p p p p c

  

        

      

       

CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Adders

Computer Organization I

104-bit Fast-Carry Adder
We can build a 4-bit adder using the fast-carry logic shown on the previous slide:

Computes the four carry bits in
three levels of logic…

…carry bits are then fed to the
four adders…

…which then compute the sum
bits

CS@VT August 2009 ©2006-09 McQuain, Feng & Ribbens

Adders

Computer Organization I

11A Higher-level Abstraction
The formulas grow too complex to make this approach ideal for building a practical
(wider) adder… however, we can consider cascading four of the 4-bit fast-carry adders to
implement a 16-bit adder.

To do this, we must consider the carry bits that must be generated for each of the 4-bit
adders.

We can adapt the approach used above to create a higher-level fast-carry logic unit to
generate those carry bits quickly as well.

See Appendix C.6 in P&H for the details.

