
CS 2505 Computer Organization I BLUE Test 2

 1

Instructions:

 Print your name in the space provided below.
 This examination is closed book and closed notes, aside from the permitted one-page formula sheet. No

calculators or other computing devices may be used.
 Answer each question in the space provided. If you need to continue an answer onto the back of a page, clearly

indicate that and label the continuation with the question number.
 If you want partial credit, justify your answers, even when justification is not explicitly required.
 There are 6 questions, priced as marked. The maximum score is 100.
 When you have completed the test, sign the pledge at the bottom of this page and turn in the test.
 Note that either failing to return this test, or discussing its content with a student who has not taken it is a

violation of the Honor Code.

Do not start the test until instructed to do so!

Name
 printed

Pledge: On my honor, I have neither given nor received unauthorized aid on this examination.

 signed

CS 2505 Computer Organization I BLUE Test 2

 2

Questions 1 through 3 refer to the datapath diagram, Figure 4.24 from P&H, that was distributed with the test.

1. [15 points] For which of the supported instructions must the ALUSrc control signal, labeled Q1 on the datapath diagram,

be set to one?

ALUSrc must be set to 1 for any instruction that requires passing the immediate bits 15:0 of the instruction to the
ALU; that would include lw and sw.

2. [15 points] Carefully describe the purpose and operation of the MUX located near the label Q2 on the datapath diagram.

Be complete.

The purpose is to select whether PC+4 or the branch target address is passed through (to the PC unless we are
executing a j instruction).

The input PC+4 is computed by the Adder unit in the upper left corner of the diagram and passed directly to the
MUX.

The branch target address is computed by the Adder unit to the immediate left of the MUX.

The MUX receives its control signal from the AND gate that is below the label Q2.

CS 2505 Computer Organization I BLUE Test 2

 3

3. [15 points] Suppose the MemtoReg control signal, labeled Q3 on the datapath diagram, was stuck at 1. Assume that all
the other control signals operate correctly. Which of the supported instruction(s), if any, would not execute correctly?
Justify your answer carefully; in particular, describe carefully just what would go wrong for each such instruction.

If MemtoReg is stuck at 1, the MUX it controls will invariably pass the value from the Read Data port on the
Data memory unit to the Write Data port on the Register File.

The most obvious effect is that the value computed by the ALU can never be passed to the Register File, which
means that each of the R-type instructions must always fail.

The lw instruction is unaffected, since MemtoReg must be set to 1 for it in any case.

j and sw will also not be affected, so long as the RegWrite signal is properly set to 0 for both.

4. Recall the various MIPS machine instruction formats.

a) [10 points] What does the number of bits that are used to specify a register number imply about the underlying
hardware? Why?

Five bits are used to specify a register number, so there are 25 or 32 different patterns that can be formed. This
implies that the underlying hardware will not have more than 32 general-purpose registers (or it will have registers
that cannot be selected in machine instructions).

b) [10 points] What role does the funct field play, and for which instructions? Be precise.

The funct field is used by R-type instructions to specify exactly which arithmetic-logical operation is to be carried
out.

CS 2505 Computer Organization I BLUE Test 2

 4

5. [20 points] The native MIPS assembly language does not include a memory-to-memory data transfer instruction:

 mcopy ($rd), ($rs), $rt # copy the contents of the memory word at
 # the address in $rs to $rt consecutive
 # memory words, starting at the address
 # in $rd
 #
 # That is:
 # Mem[$rd:$rd+$rt-1] <-- Mem[$rs]

Show how an assembler might replace the pseudo-instruction above with a sequence of basic (native) instructions to
achieve the same effect. Include comments to explain the logic of your design. You should not leave the value in any
register modified, except possibly for $at. It is OK to modify other registers as long as they have their original values
restored at the end of the operation.

 addi $sp, $sp, -12 # back up some temp registers
 sw $t0, 8($sp)
 sw $t1, 4($sp)
 sw $t2, 0($sp)

 or $t0, $zero, $zero # count number of copies made
 lw $t1, 0($rs) # get value to be copied
 or $t2, $rd, $zero # get pointer to target memory

mloop: beq $t0, $rt, mdone # done when counter reaches $rt

 sw $t1, 0($t2) # write copy of value to target

 addi $t0, $t0, 1 # count this copy

 addi $t2, $t2, 4 # step to next word in target range

 j mloop

 mdone: lw $t0, 8($sp) # restore values to temp pointers
 lw $t1, 4($sp)
 lw $t2, 0($sp)
 addi $sp, $sp, 12 # restore stack pointer

CS 2505 Computer Organization I BLUE Test 2

 5

6. [15 points] Assume that a MIPS procedure F takes two parameters via the runtime stack, and places its return value onto
the stack. The procedure is designed so that it expects the stack to be organized as shown below when it begins to
execute:

 | unknown | <-- $sp was here before setting up for call
 +--------------------+
 | dimension of array |
 | address of array |
$sp --> | return value | <-- $sp should be here when the call occurs
 +--------------------+

Given the data segment below for the calling procedure, write the code the calling procedure would need in order to set up
the stack before the call; you may use any valid MIPS instructions you like.

 .data
Length: .word 100 # dimension of array to be passed
List: .word 400 # array to pass to procedure
RetVal: .word 42 # location for return value from procedure

code to set up stack goes here:

 addi $sp, $sp, -12 # make room on the stack

 lw $at, Length # get dimension of the array
 sw $at, 8($sp) # write array dimension to the stack

 la $at, List # get address of the array
 sw $at, 4($sp) # write address of array to the stack

 # Since the return value is written to the stack by the called
 # procedure, there is no reason to write a value to that location;
 # all you need to do is reserve the space on the stack.

procedure call would go here:

CS 2505 Computer Organization I BLUE Test 2

 6

