
CS@VT September 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in C

Computer Organization I

1Recursion

Around the year 1900 the illustration of the
"nurse" appeared on Droste's cocoa tins.

This is most probably invented by the
commercial artist Jan (Johannes) Musset, who
had been inspired by a pastel of the Swiss
painter Jean Etienne Liotard, La serveuse de
chocolat, also known as La belle chocolatière.

The illustration indicated the wholesome effect
of chocolate milk and became inextricably
bound with the name Droste.

- Wikipedia Commons

CS@VT September 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in C

Computer Organization I

2Recursively-defined Functions
recursion a method of defining functions in which the function being defined is

applied within its own definition

uint64_t Fibonacci(uint64_t n) {

if (n < 2)

return 1;

return Fibonacci(n – 1) + Fibonacci(n – 2);

}

1 0,1
()

(1) (2) 1
n

fibonacci n
fibonacci n fibonacci n n

1 0
()

(1) 0
n

factorial n
n factorial n n

Reality check:

If (yes and) no, what
are you thinking??

Does your recursive fn
return a value?

If yes, are the calls to
it all in assignment or
return statements?

CS@VT September 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in C

Computer Organization I

3Execution Trace

Fibonacci(5)

== Fibonacci(4) + Fibonacci(3)

== Fibonaccci(3) + Fibonacci(2) + Fibonacci(2) + Fibonacci(1)

== Fibonacci(2) + Fibonacci(1) + Fibonacci(1) + Fibonacci(1) +

Fibonacci(1) + Fibonacci(1) + 1

== Fibonacci(1) + Fibonacci(1) + 1 + 1 + 1 + 1 + 1 + 1

== 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

== 8

uint64_t Fibonacci(uint64_t n) {

if (n < 2)

return 1;

return Fibonacci(n – 1) + Fibonacci(n – 2);

}

Fibonacci(5) leads to
15 function calls… 14
of them recursive.

CS@VT September 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in C

Computer Organization I

4Printing Large Integers
Very large integers are (somewhat) easier to read if they are not simply printed as a
sequence of digits:

12345678901234567890 vs 12,345,678,901,234,567,890

How can we do this efficiently? The basic difficulty is that printing proceeds from left to
right, and the number of digits that should precede the left-most comma depends on the
total number of digits in the number.

Here's an idea; let N be the integer to be printed, then:

if N has no more than 3 digits, just print it normally

otherwise

print all but the last 3 digits

print a comma followed by the last 3 digits

CS@VT September 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in C

Computer Organization I

5Printing Large Integers
The preceding analysis leads directly to a recursive solution:

void printWithCommas(uint64_t N) {

if (N < 1000)
printf("%d", N);

else {
printWithCommas(N / 1000);
printf(",%#03d", N % 1000);

}
}

printWithCommas(12345678901234567890)

printWithCommas(12345678901234567) defer 890

printWithCommas(12345678901234) defer 567

printWithCommas(12345678901) defer 234

printWithCommas(12345678) defer 901

printWithCommas(12345) defer 678

printWithCommas(12) defer 345

print 12

CS@VT September 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in C

Computer Organization I

6GCD
If x and y are non-negative integers so that x >= y and y >= 0, and not both are 0, the
greatest common divisor (GCD) of x and y is the largest integer z that divides both x and y.

So: GCD(12, 9) = 3 GCD(36, 28) = 4

GCD(18, 18) = 18 GCD(12, 0) = 12

That is:
0

(,)
(, %) and 0

x y
GCD x y

GCD y x y x y y

uint64_t GCD(uint64_t x, uint64_t y) {

if (y == 0) return x;

return GCD(y, x % y);
}

| and | | (%)

| and | (%) |

z x z y z x y

z y z x y z x

CS@VT September 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in C

Computer Organization I

7Recursion vs Iteration
uint64_t Fibonacci(uint64_t n) {

if (n < 2)

return 1;

return Fibonacci(n – 1) + Fibonacci(n – 2);

} uint64_t iFibonacci(uint64_t n) {

if (n < 2) return 1;

uint64_t FiboNMinusTwo = 1;
uint64_t FiboNMinusOne = 1;
uint64_t FiboN;

for (uint64_t i = 2; i <= n; i++) {
FiboN = FiboNMinusOne + FiboNMinusTwo;

FiboNMinusTwo = FiboNMinusOne;
FiboNMinusOne = FiboN;

}

return FiboN;
}

CS@VT September 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in C

Computer Organization I

8Recursion vs Iteration
uint64_t GCD(uint64_t x, uint64_t y) {

if (y == 0) return x;

return GCD(y, x % y);
}

uint64_t iGCD(uint64_t x, uint64_t y) {

while (y != 0) {
uint64_t Remainder = x % y;
x = y;
y = Remainder;

}
return x;

}

CS@VT September 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in C

Computer Organization I

9Tail vs non-Tail Recursion

uint64_t GCD(uint64_t x, uint64_t y) {

if (y == 0) return x;

return GCD(y, x % y);
}

Tail-recursive algorithms are ones that end in a recursive call (the only recursive call) and
do not leave any deferred operations:

uint64_t Fibonacci(uint64_t n) {

if (n < 2)

return 1;

return Fibonacci(n – 1) + Fibonacci(n – 2);

}

deferred until the second call returns;
sometimes called augmenting recursive

How many
function calls
would result
from
Fibonacci(5)?

CS@VT September 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in C

Computer Organization I

10A Fibonacci Refinement
Here's an alternative recursive Fibonacci calculator:

uint64_t Fibonacci(unsigned int N, uint64_t FiboNMinusTwo,
uint64_t FiboNMinusOne) {

if (N < 2) { // base cases
return FiboNMinusTwo;

} else if (N == 2) { // don't recurse, trivial
return FiboNMinusOne + FiboNMinusTwo;

} else {
return Fibonacci(N - 1, FiboNMinusOne,

FiboNMinusOne + FiboNMinusTwo);
}

}

is this tail-recursive?

How many function
calls would result
from
Fibonacci(5,1,1)?

CS@VT September 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in C

Computer Organization I

11Execution Trace
uint64_t Fibonacci(unsigned int N, uint64_t FiboNMinusTwo,

uint64_t FiboNMinusOne) {

if (N < 2) { // base cases
return FiboNMinusTwo;

} else if (N == 2) { // don't recurse, trivial
return FiboNMinusOne + FiboNMinusTwo;

} else {
return Fibonacci(N - 1, FiboNMinusOne,

FiboNMinusOne + FiboNMinusTwo);
}

}

Fibonacci(5, 1, 1)

== Fibonacci(4, 1, 2)

== Fibonacci(3, 2, 3)

== Fibonacci(2, 3, 5)

== 8

How much difference does this make?

On my laptop, computing Fibonacci(10)
10,000,000 times using the original
recursive version took 20.3130 seconds.

This version took 1.0630 seconds.

The iterative version took 0.9350 seconds.

CS@VT September 2009 ©2006-09 McQuain, Feng & Ribbens

Recursion in C

Computer Organization I

12Performance: Recursion vs Iteration
Recursive algorithms can always be implemented using iteration instead (although some
sort of auxiliary structure like a stack may be required).

A recursive implementation is often shorter and more obvious.

An recursive implementation adds cost due to the number of function calls that are required
and the related activity on the run-time stack.

An iterative implementation may, therefore, be faster… but not always.

An iterative implementation may require more memory from the heap (dynamic
allocations) and a recursive implementation may require more memory on the stack… this
has implications if you're targeting a limited environment, like an embedded system.

