Testing null and Avoiding
NullPointerException

* bad: assertEquals(null, nullObject);
* bad: assertTrue(nullObject == null);
e good: assertNull(nullObject);

Think hard about where things can go
wrong...

Pay close attention to both adding and removing.

Make sure that size stays consistent as things are added
and removed

For structures that expand or contract, like an array-based
bag, make sure you add/remove enough to trigger the
change in size, and then making sure the resized structure

IS consistent.

Make sure that a structure that once contained elements
but is now empty behaves the same as a newly created
structure.

Look at behavior for empty collections, null values, and
exceptions as specified in documentation

Often helpful to use a loop to fill a
collection for testing

Stack.push(”Chipolte”);
assertEquals(“Chipolte”, stack.peek());
assertEquals(1,stack.size());

for (inti=1;i<=10;i++){
stack.push(“restaurant number “ + i);

}

assertEquals(“restaurant number 107, stack.peek());
assertEquals(11,stack.size());

stack.push(“Qdoba”);
assertEquals(“Qdoba”, stack.peek());
assertEquals(12,stack.size());

assertEquals(“Qdoba”, stack.pop());
assertEquals(11,stack.size());

assertEquals(“restaurant number 10”, stack.pop());
assertEquals(10,stack.size());

Some tests for a stack data structure

ArrayStack<String> shortStack;
ArrayStack<String> tallStack;

public void setUp()

{
shortStack = new ArrayStack<String>();

tallStack = new ArrayStack<String>();

for (inti=0;i<9;i++)
{
tallStack.push (" + (i + 1));

}

shortStack.push ("A is for Array");
tallStack.push ("B is for Boolean");

Test clear() for a stack

public void testClear()

{

// Testing basic clear() behavior, shortStack has 2 elements in it from setUp
shortStack.clear();

assertEquals(0, shortStack.getSize());

assertTrue(shortStack.isEmpty());

shortStack.push("C is for C++");
assertEquals("C is for C++”,shortStack.peek());
assertEquals("C is for C++”,shortStack.pop());

// Testing clear()'s behavior after ensureCapacity has been run
tallStack.clear();

for (inti=0;i<15; i++)
{
tallStack.push("" +i);

}

tallStack.clear();

// Testing that the stack had its max length reset to default
assertEquals(11, tallStack.getLength());

Just checking for exceptions is not
- enough!

* sets up for the tests
*/
public void setUp() {

tower = new Tower(Position.OTHER);
discW10 = new Disc(10);

Disc discW5 = new Disc(5);
tower.push(discW5);

) « Test pushing many discs.
» Test pushing after a clear.
. test the push method » Test pushing in conjunction with
o remove() and peek().
public void testPush() { . Use size() in asserts
Exception thrown = null Also use toArray() and equals() methods
try { when available

tower.push(discW10);
}

catch (Exception exception) {

thrown = exception;

}

assertNotNull(thrown);
assertTrue(thrown instanceof lllegalStateException);

General Tips

1. Write small test methods so easier to debug

2. Remove duplicate code

— We can remove all duplicate code from our test class by moving it to
the setUp() methods.

3. Do not print anything out in unit tests

— you will never need to add any print statement in your test cases. If

you feel like having one, revisit your test case(s), you have done
something wrong.

— if you find yourself wanting to print that something succeeded, then

perhaps that something should be factored into its own (well-
named) test case.

— If you find yourself wanting to print that something failed, you
should probably be using an assert.

