
Testing null and Avoiding
NullPointerException

• bad: assertEquals(null, nullObject);
• bad: assertTrue(nullObject == null);
• good: assertNull(nullObject);

Think hard about where things can go
wrong…

• Pay close attention to both adding and removing.
• Make sure that size stays consistent as things are added

and removed
• For structures that expand or contract, like an array-based

bag, make sure you add/remove enough to trigger the
change in size, and then making sure the resized structure
is consistent.

• Make sure that a structure that once contained elements
but is now empty behaves the same as a newly created
structure.

• Look at behavior for empty collections, null values, and
exceptions as specified in documentation

Often helpful to use a loop to fill a
collection for testing

Stack.push(”Chipolte”);
assertEquals(“Chipolte”, stack.peek());
assertEquals(1,stack.size());

for (int i = 1; i <= 10 ; i++) {
stack.push(“restaurant number “ + i);

}
assertEquals(“restaurant number 10”, stack.peek());
assertEquals(11,stack.size());

stack.push(“Qdoba”);
assertEquals(“Qdoba”, stack.peek());
assertEquals(12,stack.size());

assertEquals(“Qdoba”, stack.pop());
assertEquals(11,stack.size());

assertEquals(“restaurant number 10”, stack.pop());
assertEquals(10,stack.size());

Some tests for a stack data structure
ArrayStack<String> shortStack;
ArrayStack<String> tallStack;

public void setUp()

{
shortStack = new ArrayStack<String>();
tallStack = new ArrayStack<String>();

for (int i = 0; i < 9; i++)
{

tallStack.push ("" + (i + 1));
}

shortStack.push ("A is for Array");
tallStack.push ("B is for Boolean");

}

Test clear() for a stack
public void testClear()

{
// Testing basic clear() behavior, shortStack has 2 elements in it from setUp
shortStack.clear();
assertEquals(0, shortStack.getSize());
assertTrue(shortStack.isEmpty());

shortStack.push("C is for C++");
assertEquals("C is for C++”,shortStack.peek());
assertEquals("C is for C++”,shortStack.pop());

// Testing clear()'s behavior after ensureCapacity has been run
tallStack.clear();

for (int i = 0; i < 15; i++)
{

tallStack.push("" + i);
}

tallStack.clear();

// Testing that the stack had its max length reset to default
assertEquals(11, tallStack.getLength());

}

Just checking for exceptions is not
enough!/**

* sets up for the tests
*/
public void setUp() {

tower = new Tower(Position.OTHER);
discW10 = new Disc(10);

Disc discW5 = new Disc(5);
tower.push(discW5);

}

/**
* test the push method
*/
public void testPush() {

Exception thrown = null;

try {

tower.push(discW10);
}
catch (Exception exception) {

thrown = exception;
}

assertNotNull(thrown);
assertTrue(thrown instanceof IllegalStateException);

}

• Test pushing many discs.
• Test pushing after a clear.
• Test pushing in conjunction with

remove() and peek().
• Use size() in asserts.
• Also use toArray() and equals() methods

when available

General Tips
1. Write small test methods so easier to debug

2. Remove duplicate code
– We can remove all duplicate code from our test class by moving it to

the setUp() methods.

3. Do not print anything out in unit tests
– you will never need to add any print statement in your test cases. If

you feel like having one, revisit your test case(s), you have done
something wrong.

– if you find yourself wanting to print that something succeeded, then
perhaps that something should be factored into its own (well-
named) test case.

– If you find yourself wanting to print that something failed, you
should probably be using an assert.

