
Computer Notebook Example

Virginia Tech 2020

Has-a Relationship

public class Computer {
private Memory mem;
...

}

public class Memory {
private int size;
private int speed;
private String kind;
...

}

A Computer has only one
Memory

But a Computer is not a Memory
(i.e. not an is-a relationship)

If a Notebook extends
Computer,then the Notebook is-a
Computer

Has-a can contain more than one. A
computer could have two types of memory,
RAM and Video memory.

You can also need to consider, would the
Computer be a valid entity without
Memory? That is, is the part optional?

Virginia Tech 2020

Virginia Tech 2020

Is-a Relationship

Method Overriding

• if we declare and then run:

Computer myComputer = new Computer(
"Acme", "Intel", 2, 160, 2.4);

Notebook yourComputer = new Notebook(
"DellGate", "AMD", 4, 240, 1.8, 15.0, 7.5);

System.out.println("My computer is:\n" +
myComputer.toString());

System.out.println("Your computer is:\n" +
yourComputer.toString());

Method Overriding

• the output would be:
My Computer is:
Manufacturer: Acme
CPU: Intel
RAM: 2.0 gigabytes
Disk: 160 gigabytes
Speed: 2.4 gigahertz

Your Computer is:
Manufacturer: DellGate
CPU: AMD
RAM: 4.0 gigabytes
Disk: 240 gigabytes
Speed: 1.8 gigahertz

• The screensize and weight variables are not printed
because Notebook has not defined a toString()
method, so it uses the one it inherited from Computer

Method Overriding

• To define a toString() for Notebook:
public String toString() {

String result = super.toString() +
"\nScreen size: " +
screenSize + " inches" +
"\nWeight: " + weight +
" pounds";

return result;

}

• Now Notebook's toString() method will override
Computer's toString() and will be called for all
Notebook objects.

super.methodName()

Using the prefix super in a call to a
method methodName calls the method
with that name in the superclass of the
current class

Method Overloading vs Overriding

• A method which has the same name,
return type, and parameters as a method
in a superclass will override the
superclass’ version of the method

• Methods with the same name but
different parameters are overloaded

Virginia Tech 2020

Method Overloading
• Notebook constructor:

public Notebook(String man, String processor,
double ram, int disk, double procSpeed,
double screen, double wei)

{
. . .

}

• To add a default manufacturer for a Notebook, create a
constructor with six parameters instead of seven:
public Notebook(String processor, double ram, int disk,

double procSpeed, double screen, double wei)
{

this(DEFAULT_NB_MAN, processor, ram, disk,
procSpeed,

screen, wei);
} This call invokes the seven-parameter

constructor passing on the six parameters
in this constructor, plus a default

manufacturer constant
DEFAULT_NB_MANVirginia Tech 2020

Method Overriding: Pitfall
• When overriding a method, the method must have

the same name and the same number and types of
parameters in the same order

• If not, the method will be overloaded
• The annotation @Override preceding an overridden

method will signal the complier to issue an error if it
does not find a corresponding method to override
@Override
public String toString() {
. . .

}

Virginia Tech 2020

Revisiting Inheritance and Interfaces

• Inheritance and Interfaces are two approaches
for allowing an instance of a class to have
multiple types

• Polymorphism is when the type of the instance
is determined at runtime
– At compile time the variable type is checked to make

sure that any methods invoked actually exist.
– At runtime the JVM looks at the actual object’s type

to determine which method implementation to call.

Virginia Tech 2020

CS2-ExPolymorphismComputer

• For example, if you write a program to reference
computers, you may want a variable to reference a
Computer or a Notebook

• If you declare the reference variable as
Computer theComputer;
it can reference either a Computer or a Notebook,
because a Notebook is-a Computer
i.e. either is valid

theComputer = new Computer(…);
theComputer = new Notebook(…);

Virginia Tech 2020

Polymorphism Example -Visual

• Remember:

• Because Notebook is inherited from
Computer, these are both valid:

Object the
variable

references
variable

Object of
type

Computer

variable of
type
Computer

Object of
type

Notebook

variable of
type
Computer

Virginia Tech 2020

Object Types Are
Determined
at Runtime

• Given:
Computer theComputer;
theComputer = new Notebook("Bravo","Intel", 4,

240, 2/4, 15.07.5);
System.out.println(theComputer.toString());

• Which toString() method will be called, Computer's or
Notebook's?

Virginia Tech 2020

Object Types Are
Determined
at Runtime

• The JVM correctly identifies the type
of theComputer as Notebook and
calls the toString() method
associated with Notebook

• This is an example of polymorphism

• The type cannot be determined at
compile time, but it can be
determined at run timeVirginia Tech 2020

Benefit of OO
• Declare variable and parameters as the more general

type(interface or parent class) and store specialized versions
(subclasses) but you don’t need to program checks on the
type to call different methods accordingly, JVM determines
this.

• This improves extensibility. New types — subclasses or
alternate interface implementations — can be added later,
without having to the change code that references only the
interface or parent class types.

Virginia Tech 2020

