
Hokie Example
• ExHokieClass
– overloaded constructor
– getters, setters, pid immutable
– potential design issues?
• pid aliases
• multiple VT degrees

– style issues
• parameter names, instance variable names

– main method and JUnit
• Run both
• Investigate failures (notice test cases for

testNextReunion())

JUnit Demo follow up
• What is JUnit testing?
– Framework for unit testing
– Unit testing is writing tests for small units of code
– Typically instantiate an object in the set up
– Call various methods in different test cases
– Use assert statements to check for correctness of

method calls
• It’s okay not to immediately understand everything

demoed in Eclipse, go practice on your own, use the
examples to study and reference!

Virginia Tech 2020

Testing
• Have an ADVERSARIAL MINDSET

– goal should be to try to break the code, rather than to see if it works
– testing easy paths through the code is a fine place to start, but you learn very

little from such tests
– look for edge cases, making sure that the code succeeds or fails as expected

around things like the boundaries of conditional statements and loops
– Try to write tests that are better than our reference tests on WebCAT!!

• The role of unit testing in longer-lived projects: As an example, on some teams
every bug submitted to a bug-tracking system is accompanied by a unit test that
elicits the bug. The bug is considered fixed when the test no longer fails. The test is
then added to a pool of regression tests that are run periodically — ideally on
every future change — to make sure the bug hasn’t been reintroduced.

Virginia Tech 2020

Testing (from posted Guidelines)
• N simple conditions, N+1 branches and tests

Assertions in a test method need to make it to every condition of an if-else statement. It isn’t enough that
the test reaches the ‘else’ condition. To test an if-else statement properly, the body of each condition
must be run during testing.
if (x == 0 && y ==1) // 2 conditions, 3 checks- TF, FT, TT
if (x == 0 || y == 1) // 2 conditions, 3 checks- TF, FT, FF

• Assert Statements
Common ones:

assertEquals
assertTrue
assertFalse
assertNull
assertNotNull

Checking if values are equal?
NO assertEquals(true, shortStack.peek ().equals("A is for Array"));
MEH assertTrue(shortStack.peek ().equals("A is for Array"));
YES!!!assertEquals(“A is for Array",shortStack.peek ());

• Remember to reference Canvas| General Course Information | Resources | Writing JUnit Tests with
student.TestCase

Virginia Tech 2020

BEWARE
TESTING
• if statements in test cases - should just be

using assert statements
• remember can use assertTrue and assertFalse
• should have no parameters and return types

in test methods
• helps debugging to put expected value before

actual value in assertEquals statements

Virginia Tech 2020

Testing null and Avoiding
NullPointerException

• bad: assertEquals(null, nullObject);
• bad: assertTrue(nullObject == null);

• good: assertNull(nullObject);

Virginia Tech 2020

