Hokie Example
* ExHokieClass
— overloaded constructor
— getters, setters, pid immutable

— potential design issues?
* pid aliases
* multiple VT degrees

— style issues

* parameter names, instance variable names
— main method and JUnit

 Run both

* Investigate failures (notice test cases for
testNextReunion())

JUnit Demo follow up
 What is JUnit testing?

— Framework for unit testing

— Unit testing is writing tests for small units of code
— Typically instantiate an object in the set up

— Call various methods in different test cases

— Use assert statements to check for correctness of
method calls

* It’s okay not to immediately understand everything
demoed in Eclipse, go practice on your own, use the
examples to study and reference!

Testing

Have an ADVERSARIAL MINDSET

— goal should be to try to break the code, rather than to see if it works

— testing easy paths through the code is a fine place to start, but you learn very
little from such tests

— look for edge cases, making sure that the code succeeds or fails as expected
around things like the boundaries of conditional statements and loops

— Try to write tests that are better than our reference tests on WebCAT!!

The role of unit testing in longer-lived projects: As an example, on some teams
every bug submitted to a bug-tracking system is accompanied by a unit test that
elicits the bug. The bug is considered fixed when the test no longer fails. The test is
then added to a pool of regression tests that are run periodically — ideally on
every future change — to make sure the bug hasn’t been reintroduced.

Testing (from posted Guidelines)

* Nsimple conditions, N+1 branches and tests

Assertions in a test method need to make it to every condition of an if-else statement. It isn’t enough that
the test reaches the ‘else’ condition. To test an if-else statement properly, the body of each condition
must be run during testing.

if (x==0&& y ==1) // 2 conditions, 3 checks- TF, FT, TT
if(x==0[] y==1)//2 conditions, 3 checks- TF, FT, FF
* Assert Statements
Common ones:
assertEquals
assertTrue
assertFalse
assertNull
assertNotNull
Checking if values are equal?
NO assertEquals(true, shortStack.peek ().equals("A is for Array"));
MEH assertTrue(shortStack.peek ().equals("A is for Array"));
YES!!lassertEquals(“A is for Array",shortStack.peek ());

* Remember to reference Canvas| General Course Information | Resources | Writing JUnit Tests with
student.TestCase

BEWARE

TESTING

if statements in test cases - should just be
using assert statements

remember can use assertTrue and assertFalse

should have no parameters and return types
in test methods

helps debugging to put expected value before
actual value in assertEquals statements

Testing null and Avoiding
NullPointerException

 bad: assertEquals(null, nullObject);

 bad: assertTrue(nullObject == null);

* good: assertNull(nullObject);

