
The Comparable Interface
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

• Define a compareTo method to order objects
• String class defines compareTo
• For example if str and other are Strings,

str.compareTo(other) returns
– Negative if str comes before other
• str <- “Virginia” other <- “Wyoming”

– Zero if str and other are equal
• str <- “Virginia” other <- “Virginia”

– Positive if str comes after other
• str <- “Virginia” other <- “Alabama”

Virginia Tech 2020

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

The Comparator Interface
http://docs.oracle.com/javase/7/docs/api/java/util/Comparator.

html

• As we have seen, implementing Comparable will
define how you compare a class with compareTo

• Implementing Comparator lets you create various
classes that define how to compare two instances of
the generic class
– various classes that compare based on different

rules/fields
– call a sort method with one comparator object to

sort on name and then make another call with a
different comparator object to sort on age.

http://docs.oracle.com/javase/7/docs/api/java/util/Comparator.html

…

…

Comparable vs Comparator

• To define one specific way to compare objects
as a part of the class, have the class
implement Comparable and write a
compareTo(T pther) member method

• To define multiple ways to compare objects,
define distinct classes that implement
Comparator and define a compare(T left, T
right) method. This way comparator objects
can be created and sent two objects to
compare.

Examples of Comparator

• The String class implements Comparable in
such a way that Strings will be ordered in
ascending, alphabetical order -- their “natural”
order. For cases where you need something
else -- sorting by reverse alphabetical order,
string length, etc... -- you can create a
Comparator class to handle that.

Using Java Standard Sorting Methods

static <T> void sort(T[] a, Comparator<? super T> c)
Sorts the specified array of objects according to the order induced by the

specified comparator.

static <T> void sort(T[] a, int fromIndex, int toIndex, Comparator<? super
T> c)

Sorts the specified range of the specified array of objects according to the
order induced by the specified comparator.

(from https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html)

Object passed in
determines how elements
get sorted

Object passed in
determines how elements
get sorted

