
CS 1124
Media Computation

Steve Harrison
Lecture 4.1 (September 15, 2008)

Today ...

HW 2 review
 cool lagniappes

 a few problems to work on

Copying
 we left off trying to write a scale-up function....

 lets back up and review some stuff

 some heuristics about copying, placing images in other images,
and scaling

2

Most did very well !
Points Number

100 12

 > 94 9

90 - 95 4

< 90 6

Cool lagniappes

Cool lagniappes

• Not decomposed into functions

• Not reading CLOSELY the assignment

Problems seen in
HW 2

Some really clever
recipes

• A couple observed that pixel-level module
for posterize was better than picture-level

 def poster(pixel) :

• Some passed color-changing factor
def decreaseRed(picture, amount) :

• One noticed that combining functions
needed flag to trigger writing/not-writing file
def decreaseRed(picture, amount, writeFlagTF) :

I don’t think anyone
noticed ...

That you only had to
create FIVE new
pictures using
makePicture(file) since
the sixth picture was to
made by combining two
of the functions:

def makePictures(file) :
 redPic = makePicture(file)
 greenPic = makePicture(file)
 bluePic = makePicture(file)
 sunsetPic=makePicture(file)
 postrPic = makePicture(file)

 redPic = makeRedPic(redPic)
 bluePic = makeBluePic(bluePic)
 greenPic = makeGreenPic(greenPic)
 sunsetPic=makeSunsetPic(sunsetPic)
 postrPic=makePostrPic(posterPic)
 comboPic = makeComboPic(sunsetPic)

def comboPic(picture) :
 return makePostrPic(picture)

def makePostrPic(picture) :
.
.
.
def makeRed(picture) :
.
.
.
.

I don’t think anyone
noticed ...

That you only had to
create FIVE new
pictures using
makePicture(file) since
the sixth picture was to
made by combining two
of the functions:

def makePictures(file) :
 redPic = makePicture(file)
 greenPic = makePicture(file)
 bluePic = makePicture(file)
 sunsetPic=makePicture(file)
 postrPic = makePicture(file)

 redPic = makeRedPic(redPic)
 bluePic = makeBluePic(bluePic)
 greenPic = makeGreenPic(greenPic)
 sunsetPic=makeSunsetPic(sunsetPic)
 postrPic=makePostrPic(posterPic)
 comboPic = makePostrPic(sunsetPic)

I don’t think anyone
noticed ...

You could write one change color
function and pass in the amount to
change each. This would be slower for
changeRed, changeBlue, changeGreen,
but faster for sunset and maybe combo.
def changeColor(picture, redAmount, greenAMount, blueAmount) :

for pxl in getPixels(picture) :
 pxlRed = int(getRed(pxl)* redAmount)
 pxlGreen = int(getGreen(pxl) * greenAmount)
 pxlBlue = int(getBlue(pxlBlue) * blueAmount)
 setColor(pxl, pxlRed, pxlGreen, pxlBlue)

Today ...

HW 2 review
 cool lagniappes

 a few problems to work on

Copying
 we left off trying to write a scale-up function....

 lets back up and review some stuff

 some heuristics about copying, placing images in other images,
and scaling

10

Scaling

Scaling a picture (smaller or larger) has to do with
sampling the source picture differently
When we just copy, we sample every pixel

If we want a smaller copy, we skip some pixels

We sample fewer pixels
If we want a larger copy, we duplicate some pixels

We over-sample some pixels

Scaling the picture down
def copyPictureHalfAsBig(file):
 # Set up the source and target pictures
 pic = makePicture(file)
 canvasFile = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasFile)
 # Now, do the actual copying
 sourceX = 45
 for targetX in range(100,100+((200-45)/2)):
 sourceY = 25
 for targetY in range(100,100+((200-25)/2)):
 color = getColor(getPixel(pic,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 sourceY = sourceY + 2
 sourceX = sourceX + 2
 show(pic)
 show(canvas)
 return canvas

>>> barbFile = pickAFile()
>>> setMediaPath()
>>> smallPic = copyPictureHalfAsBig(barbFile)

>>> show(picture)

Blank files in mediasources

getMediaPath(“7inX95in.jpg”) gives you a JPEG
canvas which prints out as 7x9.5 inches
Letter-sized page with 1 inch margins

getMediaPath(“640x480.jpg”) gives a JPEG canvas
at a common size: 640 pixels across by 480 pixels
high

Scaling Up: Growing the picture

First - a reminder about integer and real numbers

Scaling Up: Growing the picture

To grow a picture, we
simply duplicate some
pixels

We do this by
incrementing by 0.5, but
only use the integer part

(Remember our x & y’s
must be integer)

>>> print int(1)
1
>>> print int(1.5)
1
>>> print int(2)
2
>>> print int(2.5)
2

Scaling up: How it works

 Same basic setup as
copying and rotating:

Scaling up: How it works 2

 But as we increment by
only 0.5, and we use the
int() function, we end up
taking every pixel twice.

 Here, the blank pixel at
(1,1) in the source gets
copied twice onto the
canvas.

Scaling up: How it works 3

 Black pixels gets copied
once…

Scaling up: How it works 4

 And twice…

Scaling up: How it works 5

 The next “column” (x) in
the source, is the same
“column” (x) in the target.

Scaling up: How it ends up

 We end up in the same place
in the source, but twice as
much in the target.

 Notice the degradation:
 Curves get “choppy”:

Pixelated

Copying pixels

Copying pixels

In general, what we want to do is to keep track of a
sourceX and sourceY, and a targetX and targetY.
We increment (add to them) in pairs

sourceX and targetX get incremented together
sourceY and targetY get incremented together

The tricky parts are:
Setting values inside the body of loops
Incrementing at the bottom of loops

Lets figure out how to make a
copy
copyBarb()

23

Copying Barb to a canvas
def copyBarb():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 targetX = 1
 for sourceX in range(1,getWidth(barb)+1):
 targetY = 1
 for sourceY in range(1,getHeight(barb)+1):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 targetY = targetY + 1
 targetX = targetX + 1
 show(barb)
 show(canvas)
 return canvas

Walking through the copying function

First, get the source (barb) and target (canvas) files
and pictures as names we can use later.

def copyBarb():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying

 targetX = 1

 for sourceX in range(1,getWidth(barb)+1):

 targetY = 1

 for sourceY in range(1,getHeight(barb)+1):

 color = getColor(getPixel(barb,sourceX,sourceY))

 setColor(getPixel(canvas,targetX,targetY), color)

 targetY = targetY + 1

 targetX = targetX + 1

 show(barb)

 show(canvas)

 return canvas

The actual copy

 We get the color of the pixel
at sourceX and sourceY

 We set (copy) the color to
the pixel in the target picture
at targetX and targetY

def copyBarb():

 # Set up the source and target pictures

 barbf=getMediaPath("barbara.jpg")

 barb = makePicture(barbf)

 canvasf = getMediaPath("7inX95in.jpg")

 canvas = makePicture(canvasf)

 # Now, do the actual copying
 targetX = 1
 for sourceX in range(1,getWidth(barb)):
 targetY = 1
 for sourceY in range(1,getHeight(barb)):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 targetY = targetY + 1
 targetX = targetX + 1
 show(barb)

 show(canvas)

 return canvas

The actual copy

 We get the color of the pixel
at sourceX and sourceY

 We set (copy) the color to
the pixel in the target picture
at targetX and targetY

 targetX = 1
 for sourceX in range(1,getWidth(barb)+1):
 targetY = 1
 for sourceY in range(1,getHeight(barb)+1):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 targetY = targetY + 1
 targetX = targetX + 1

Setting up the copy loop

 targetX gets set to 1 at the
beginning

 sourceX will range across
the width of the source
picture

 INSIDE the loop, we set
targetY to 1
 Inside because we want

it to start at 1 each
time we do a new X

 sourceY will range from 1 to
height of source

def copyBarb():

 # Set up the source and target pictures

 barbf=getMediaPath("barbara.jpg")

 barb = makePicture(barbf)

 canvasf = getMediaPath("7inX95in.jpg")

 canvas = makePicture(canvasf)

 # Now, do the actual copying
 targetX = 1
 for sourceX in range(1,getWidth(barb)+1):
 targetY = 1
 for sourceY in range(1,getHeight(barb)+1):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 targetY = targetY + 1
 targetX = targetX + 1

 show(barb)

 show(canvas)

 return canvas

Ending the loop

 Just before we end the
sourceY loop, we increment
targetY
 It’s now set up for the

next time through the
loop

 It’s set correctly for the
next value of sourceY

 Just before we end the
sourceX loop, we increment
the targetX
 Note carefully the

indentation to figure out
which goes with which
loop

def copyBarb():

 # Set up the source and target pictures

 barbf=getMediaPath("barbara.jpg")

 barb = makePicture(barbf)

 canvasf = getMediaPath("7inX95in.jpg")

 canvas = makePicture(canvasf)

 # Now, do the actual copying

 targetX = 1

 for sourceX in range(1,getWidth(barb)+1):

 targetY = 1

 for sourceY in range(1,getHeight(barb)+1):

 color = getColor(getPixel(barb,sourceX,sourceY))

 setColor(getPixel(canvas,targetX,targetY), color)

 targetY = targetY + 1

 targetX = targetX + 1
 show(barb)

 show(canvas)

 return canvas

Ending the copy function

 At the very end, we show
the source and target

 And return the modified
target.

 Why do we need the return?

def copyBarb():

 # Set up the source and target pictures

 barbf=getMediaPath("barbara.jpg")

 barb = makePicture(barbf)

 canvasf = getMediaPath("7inX95in.jpg")

 canvas = makePicture(canvasf)

 # Now, do the actual copying

 targetX = 1

 for sourceX in range(1,getWidth(barb)+1):

 targetY = 1

 for sourceY in range(1,getHeight(barb)+1):

 color = getColor(getPixel(barb,sourceX,sourceY))

 setColor(getPixel(canvas,targetX,targetY), color)

 targetY = targetY + 1

 targetX = targetX + 1

 show(barb)
 show(canvas)
 return canvas

Works either way
def copyBarb2():

 # Set up the source and target pictures

 barbf=getMediaPath("barbara.jpg")

 barb = makePicture(barbf)

 canvasf = getMediaPath("7inX95in.jpg")

 canvas = makePicture(canvasf)

 # Now, do the actual copying

 sourceX = 1

 for targetX in range(1,getWidth(barb)+1):

 sourceY = 1

 for targetY in range(1,getHeight(barb)+1):

 color = getColor(getPixel(barb,sourceX,sourceY))

 setColor(getPixel(canvas,targetX,targetY), color)

 sourceY = sourceY + 1

 sourceX = sourceX + 1

 show(barb)

 show(canvas)

 return canvas

As long as we increment
sourceX and targetX
together, and sourceY
and targetY together, it
doesn’t matter which is
in the for loop and which
is incremented via
expression

Transformation =
Small changes in copying

Making relatively small changes in this basic copying
program can make a variety of transformations.
These are heuristics.
Change the targetX and targetY, and you copy to

wherever you want

Cropping: Change the sourceX and sourceY range, and
you copy only part of the image.

Rotating: Swap targetX and targetY, and you end up
copying sideways

Scaling: Change the increment on sourceX and sourceY,
and you either enlarge or shrink the image.

Copying into the middle of the
canvas

def copyBarbMidway():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 targetX = 100
 for sourceX in range(1,getWidth(barb)+1):
 targetY = 100
 for sourceY in range(1,getHeight(barb)+1):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 targetY = targetY + 1
 targetX = targetX + 1
 show(barb)
 show(canvas)
 return canvas

Copying: How it works

 Here’s the initial setup:

Copying: How it works 2

 After incrementing the
sourceY and targetY once
(whether in the for or via
expression):

Copying: How it works 3

 After yet another increment
of sourceY and targetY:

 When we finish that
column, we increment
sourceX and targetX, and
start on the next column.

Copying: How it looks at the end

 Eventually, we copy every
pixel

Making a collage

 Could we do something to
the pictures we copy in?
 Sure! Could either apply

one of those functions
before copying, or do
something to the pixels
during the copy.

 Could we copy more than
one picture!
 Of course! Make a collage!

def createCollage():
 flower1=makePicture(getMediaPath("flower1.jpg"))
 print flower1
 flower2=makePicture(getMediaPath("flower2.jpg"))
 print flower2
 canvas=makePicture(getMediaPath("640x480.jpg"))
 print canvas
 #First picture, at left edge
 targetX=1
 for sourceX in range(1,getWidth(flower1)):
 targetY=getHeight(canvas)-getHeight(flower1)-5
 for sourceY in range(1,getHeight(flower1)):
 px=getPixel(flower1,sourceX,sourceY)
 cx=getPixel(canvas,targetX,targetY)
 setColor(cx,getColor(px))
 targetY=targetY + 1
 targetX=targetX + 1
 #Second picture, 100 pixels over
 targetX=100
 for sourceX in range(1,getWidth(flower2)):
 targetY=getHeight(canvas)-getHeight(flower2)-5
 for sourceY in range(1,getHeight(flower2)):
 px=getPixel(flower2,sourceX,sourceY)
 cx=getPixel(canvas,targetX,targetY)
 setColor(cx,getColor(px))
 targetY=targetY + 1
 targetX=targetX + 1

#Third picture, flower1 negated
 negative(flower1)
 targetX=200
 for sourceX in range(1,getWidth(flower1)):
 targetY=getHeight(canvas)-getHeight(flower1)-5
 for sourceY in range(1,getHeight(flower1)):
 px=getPixel(flower1,sourceX,sourceY)
 cx=getPixel(canvas,targetX,targetY)
 setColor(cx,getColor(px))
 targetY=targetY + 1
 targetX=targetX + 1
 #Fourth picture, flower2 with no blue
 clearBlue(flower2)
 targetX=300
 for sourceX in range(1,getWidth(flower2)):
 targetY=getHeight(canvas)-getHeight(flower2)-5
 for sourceY in range(1,getHeight(flower2)):
 px=getPixel(flower2,sourceX,sourceY)
 cx=getPixel(canvas,targetX,targetY)
 setColor(cx,getColor(px))
 targetY=targetY + 1
 targetX=targetX + 1
 #Fifth picture, flower1, negated with decreased red
 decreaseRed(flower1)
 targetX=400
 for sourceX in range(1,getWidth(flower1)):
 targetY=getHeight(canvas)-getHeight(flower1)-5
 for sourceY in range(1,getHeight(flower1)):
 px=getPixel(flower1,sourceX,sourceY)
 cx=getPixel(canvas,targetX,targetY)
 setColor(cx,getColor(px))
 targetY=targetY + 1
 targetX=targetX + 1
 show(canvas)
 return(canvas)Exactly from book

What a Mess! How would you
clean up createCollage() ?
Why does targetY always start at

getHeight(canvas)-getHeight(flower2)-5 ?
Notice that a lot of code repeats, can it be

modularized?
Notice also that it makes 5 different pictures from

only 2 originals -- and that number five depends on
having made flower1 a negative already

40

Cropping: Just the face
def copyBarbsFace():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 targetX = 100
 for sourceX in range(45,200):
 targetY = 100
 for sourceY in range(25,200):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 targetY = targetY + 1
 targetX = targetX + 1
 show(barb)
 show(canvas)
 return canvas

Again, swapping the loop works fine

def copyBarbsFace2():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 sourceX = 45
 for targetX in range(100,100+(200-45)):
 sourceY = 25
 for targetY in range(100,100+(200-25)):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 sourceY = sourceY + 1
 sourceX = sourceX + 1
 show(barb)
 show(canvas)
 return canvas

We can use targetX
and targetY as the
for loop index
variables, and
everything works
the same.

In HW 3 (signs in pictures)

Which is source and which is target?

43

HW 3 HINTS
Incrementing by a real number (e.g. 0.9 or 1.5) may

mean that you need to change an integer to a real.
to change make a real number out of an integer, multiply

by 1.0
targetRealX = targetX * 1.0

But if you do, be sure to convert to an integer when

getting or writing to a pixel
pxl = getPixel(picture, int(targetRealX), targetY)

Putting the sign into the space for the sign may
require some scaling in x and/or in y

sourceXRealStep = getWidth(source)*1.0/getWidth(target)*1.0

44

Today ...

HW 2 review
 cool lagniappes

 a few problems to work on

Copying
 we left off trying to write a scale-up function....

 lets back up and review some stuff

 some heuristics about copying, placing images in other images,
and scaling

45

Coming Attractions

Wednesday
contact your group members to decide which of your

three options you will create

Friday
Assignment 3 Due 2:00 PM

Next Monday
Read Chapter 5

Quiz 5 due 10:00 AM

next Friday (9/26)

46

