
CMSuggester: Method Change Suggestion to 
Complement Multi-Entity Edits

Presented By
Sheikh Shadab Towqir

CS 6704



Introduction

• Developers spend a lot of time and resources for the maintenance of software.

• 70% of time and resources is spent in maintenance to fix bugs, add features, or refactor code [1].

• Bug fixes:
• Around 80% of real bugs are fixed by editing multiple program locations together (multi-entity edits) [2]
• Over half the maintenance issues are related to bug fixes [3]

• A multi-entity edit is a program commit that simultaneously changes multiple entities.



Problem Statement

• It is challenging to always apply multi-entity edits consistently and completely.

• Developers sometimes fail to identify all the edit locations relevant to a bug [4].

• Limitations with existing tools:
• Version history to mine rules: Syntactic or semantic relationships between co-changed entities are not considered and 

have demonstrated low accuracies of suggestion [5, 6].

• Textual diff to infer structural differences: Only systematic additions and deletions are considered (not changes) [7].

• Program transformation from similar edits: Does not help if distinct edits should be co-applied to dissimilar methods [8].



Proposed Tool

• CMSuggester has been developed to suggest complementary changes for multi-entity edits.

• Focuses purely on suggestion for *CM → AF edits.
• CM: Changed Methods
• AF: Added Fields

• *CM → AF edits are when:
• A field experiences an AF change
• One or more methods accessing the field experience CM changes.



Proposed Tool

• CMSuggester works by identifying peer fields (common fields) from the added field 𝒇𝒏.
• Example: Fields that are accessed by the changed methods

• Uses several filtering steps to identify and generate this list of peer fields:
• Location
• Name Similarity
• Access Type

• These peer fields are then used to suggest edits to unchanged methods that also access these fields.



Motivating Example
• The field _clobValue was added.

• The method getLength() along with 11 other 
methods were modified to include the new 
field.

• However, developers forgot to modify the 
restoreToNull() method.

• Developers often forget or fail to identify all 
locations for a multi-entity edit.

• This missing change remained in the code for 
two years.



Motivating Example
• Could CMSuggester have solved this issue?

• Identify added field

• Identify changed methods

• Identify peer fields

• Suggest  methods to change



Empirical Findings
• In a prior study [9], 2,854 bug fixes from four 

popular open source projects to explore 
multi-entity edits.

• Study reveals that *CM→AF is one of the 
most popular patterns.

• Five such commits in each project were 
sampled to manually analyze the co-changed 
methods for any newly added field.



Empirical Findings
• In 15 of the 20 examined revisions, the co-

changed methods commonly access existing 
field(s).

• For each added field, there are 2 to 5 
methods co-changed to access the field

• Findings show that when one or more 
methods in a cluster are changed to access a 
new field, the other methods from the same 
cluster are likely to be co-changed for the new 
field access



Approach
• Works in four steps:

1. Peer Field identification
2. Naming-Based Filter
3. Access-Based Filter
4. Peer-Based Method Search



Approach: Peer Field Identification
• Newly added field: 𝑓"

• Peer fields are used to denote the existing fields that 
satisfy the following conditions:

• Exists in the same class as 𝑓"

• accessed by one or more changed methods that 

also access 𝑓"

• A peer fields set P = {p1, p2, ….} is created.



Approach: Name-Based Filter
• Considers two naming patterns:

• Constant fields (Usually capitalize all letters) 
Example:MAX_OVERFLOW_SIZE

• Variable fields (Usually have a combination of 
lowercase and uppercase letters) 
Example:outputPrecision

• Fields are classified to be either constants or variables.

• If 𝑓" is a variable, constants are removed from P (the list 
of peer fields), and vice versa.



Approach: Access-Based Filter
• For each methods, accessed fields are classified into the 

three following modes:
• Pure Read
• Pure Write
• Read and Write

• When a field’s access mode is distinct from that of 𝑓", 
CMSuggester removes the field from P.



Approach: Peer-Based Method Search

• For the refined list of peer fields in P:

• Search for unchanged methods that access at least 
two of the refined fields.

• For efficiency, leverage access modifiers to reduce 
search space.



Evaluation: Data Set

• For four open source projects (discussed before), search for *CM → AF edits based on the following 
criteria:
• Contains at least two methods co-changed for an added field
• Has each changed method accessing at least two existing fields

• A total of 106 commits are retrieved for the four projects.



Evaluation: Data Set



Evaluation: Experimental Setup

• For the experiments, the tasks are divided into three categories:
• one-AF-one-CM (1A1C)
• one-AF-two-CM (1A2C)
• one-AF-three-CM (1A3C)



Evaluation: Metrics

• Coverage

• Precision
• Recall

• F-Score
• Weighted Average



Evaluation: Metrics

• Coverage (later evaluations are limited based on coverage)



Evaluation: Metrics

• Precision



Evaluation: Metrics

• Recall



Evaluation: Metrics

• F-score



Evaluation: Metrics

• Weighted Average



Evaluation: Comparison

• CMSuggester is compared against state-of-the-art co-change suggestion tool: ROSE [10].

• ROSE mines the association rules between co-changed entities from software version histories.

• Example rule mined by ROSE:



Evaluation: Result (1A1C Tasks)

• CMSuggester outperforms ROSE for all the evaluation 
metrics.

• Two major reasons:
• Since ROSE depends on version history (which may 

be incomplete or some entities may have never been 
co-changed before)

• ROSE does not leverage any syntactic or semantic 
relation between the co-changed entities and can 
infer incorrect rules.



Evaluation: Result (1A1C Tasks)

• CMSuggester outperformed ROSE in many 1A1C tasks. 

• This shows that CMSuggester complements ROSE by inferring co-changes from methods’ common 
field accesses instead of from the history. 

CMSuggester outperforms ROSE ROSE outperforms CMSuggester



Evaluation: Result (1A2C and 1A3C Tasks)
• Both CMSuggester and ROSE have obtained similar 

F-scores.

• However, CMSuggester has obtained a significantly 
higher coverage.

• Higher coverage shows that it predicted changes 
for the majority of tasks

• ROSE is limited by historical data.

• CMSuggester can find more peer fields from more 
methods provided.

1A2C Tasks

1A3C Tasks



Evaluation: Result (1A2C and 1A3C Tasks)
• CMSuggester predicts better when more CMs are provided as input.



Evaluation: Sensitivity to Filters

• CMSuggester obtained the lowest overall coverage (68%), but the highest overall precision (75%), 
recall (72%), and F-score (73%).

• 𝐶𝑀𝑆𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑟# achieved the highest coverage (91%) but lowest F-score (68%). 

• Compared with 𝐶𝑀𝑆𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑟$, 𝐶𝑀𝑆𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑟" obtained better coverage, precision, F-score.



Related Work

• Co-change Mining

• Change Recommendation Systems

• Automatic Program Repair (APR)



Related Work

• Co-change Mining:

• Mine version histories for co-change patterns
• These approaches do not analyze any syntactic or semantic relationship between co-changed 

modules
• CMSuggester complements these approaches when version history is limited



Related Work

• Change Recommendation Systems:

• Recommend changes based on either the co-occurrence of APIs or code similarity
• In comparison, CMSuggester recommends changes based on the common field accesses 

between methods



Related Work

• Automatic Program Repair (APR):
• There are tools proposed to generate candidate patches for certain bugs, and automatically check 

patch correctness using compilation and testing.

• Differences with CMSuggester:
• APR focuses on single-entity changes by creating single-method updates from scratch.

• CMSuggester focuses on multi-entity changes by suggesting method changes to complement 
already-applied edits

• APR approaches generate concrete and applicable statement-level changes as a candidate fix

• CMSuggester locates methods to change.



Discussion
• Possible additions and/or modifications of the filters for better performance.

• Extending the tool to handle other popular co-change patterns: *CM → CM, *CM → AM,  etc.

• Thoughts about the evaluation process (possible weaknesses). 

• Weaknesses of CMSuggester.



References
1. Christa, S., Madhusudhan, V., Suma, V., Rao, J.J.: Software maintenance: From the perspective of effort and 

cost requirement. In: Proc. ICDECT. pp. 759–768 (2017)
2. Zhong, H., Su, Z.: An empirical study on real bug fixes. In: Proc. ICSE. pp. 913–923 (2015)
3. Herzig, K., Just, S., Zeller, A.: It’s not a bug, it’s a feature: how misclassification impacts bug prediction. In: 

Proc. ICSE. pp. 392–401 (2013)
4. Park, J., Kim, M., Ray, B., Bae, D.H.: An empirical study of supplementary bug fixes. In: Proc. MSR. pp. 40–49 

(2012) 
5. Zimmermann, T., Weisgerber, P., Diehl, S., Zeller, A.: Mining version histories to guide software changes. In: 

Proc. ICSE. pp. 563–572 (2004)
6. Ying, A.T.T., Murphy, G.C., Ng, R.T., Chu-Carroll, M.: Predicting source code changes by mining change 

history. IEEE Trans. Software Eng. 30(9), 574–586 (2004) 
7. Kim, M., Notkin, D.: Discovering and representing systematic code changes. In: Proc. ICSE. pp. 309–319 

(2009)
8. . Meng, N., Kim, M., McKinley, K.: Lase: Locating and applying systematic edits. In: Proc. ICSE. pp. 502–511 

(2013)



References

9. Wang, Y., Meng, N., Zhong, H.: An empirical study of multi-entity changes in real bug fixes. In: Proc. ICSME 
(2018)

10. Zimmermann, T., Weisgerber, P., Diehl, S., Zeller, A.: Mining version histories to guide software changes. In: 
Proc. ICSE. pp. 563–572 (2004)



Thank you


