CMSuggester: Method Change Suggestion to
Complement Multi-Entity Edits

Presented By
Sheikh Shadab Towgqir

CS 6704

Introduction

Developers spend a lot of time and resources for the maintenance of software.

70% of time and resources is spent in maintenance to fix bugs, add features, or refactor code [1].

Bug fixes:
* Around 80% of real bugs are fixed by editing multiple program locations together (multi-entity edits) [2]
* Over half the maintenance issues are related to bug fixes [3]

A multi-entity edit is a program commit that simultaneously changes multiple entities.

Problem Statement

* Itis challenging to always apply multi-entity edits consistently and completely.

* Developers sometimes fail to identify all the edit locations relevant to a bug [4].

* Limitations with existing tools:
* Version history to mine rules: Syntactic or semantic relationships between co-changed entities are not considered and
have demonstrated low accuracies of suggestion [5, 6].

» Textual diff to infer structural differences: Only systematic additions and deletions are considered (not changes) [7].

* Program transformation from similar edits: Does not help if distinct edits should be co-applied to dissimilar methods [8].

Proposed Tool

* CMSuggester has been developed to suggest complementary changes for multi-entity edits.

* Focuses purely on suggestion for *CM - AF edits.
* CM: Changed Methods
* AF: Added Fields

* *CM - AF edits are when:
* Afield experiences an AF change
* One or more methods accessing the field experience CM changes.

Proposed Tool

» CMSuggester works by identifying peer fields (common fields) from the added field f,,.
e Example: Fields that are accessed by the changed methods

* Uses several filtering steps to identify and generate this list of peer fields:

* Location
* Name Similarity
* Access Type

* These peer fields are then used to suggest edits to unchanged methods that also access these fields.

Motivating Example

The field _clobValue was added.

The method getLength() along with 11 other
?elfjhOds were modified to include the new
ield.

However, developers forgot to modify the
restoreToNull() method.

Developers often forget or fail to identify all
locations for a multi-entity edit.

This missing change remained in the code for
two years.

1 public class SQLChar extends

2 DataType implements

3 StringDataValue, StreamStorable{
4

)

+ protected Clob _clobValue;

6 public int getLength() throws
7 StandardException{

8 + if (_clobValue != null) {
9 + return getClobLength (): }
10 if (rawLength != -1)

11 return rawlLength ;

12 if (stream != null) {

13

14 }

15 public void restoreToNull () {
16 value = null;

17 stream = null;

18 rawLength = -1;

19 cKey = null;

20 }}

Motivating Example

e Could CMSuggester have solved this issue?

* |dentify added field

* |dentify changed methods
* Identify peer fields

e Suggest methods to change

v i B R R

_——
-0 ©
+ +

12
13
14
15
16
17
18
19
20

public class SQLChar extends
DataType implements
StringDataValue, StreamStorable{

+ protected Clob _clobValue;
public int getLength() throws
StandardException {
if (_clobValue != null) {
return getClobLength (); }
if (rawLength != -1)
return rawLength
if (stream != null) {

}
public void restoreToNull() {

value = null;
stream = null;
rawLength = -1;
cKey = null;

}}

Empirical Findings

* In a prior study [9], 2,854 bug fixes from four
popular open source projects to explore
multi-entity edits.

 Study reveals that *CM—AF is one of the
most popular patterns.

* Five such commits in each project were
sampled to manually analyze the co-changed
methods for any newly added field.

Table 1: Commonality inspection of 20 *CM-AF multi-entity edits

of
Project Commits Added Field Changed Commonality
Methods

Aries 3d072a4 monitor 2 Field access
50ca3da properties 2 Field access
5d334d7 BEAN 2 Method invocation
95766a2 NS_AUTHZ 2 None
9586d78 enlisted 3 Field access

Cassandra 0792766 validBufferBytes 3 Field access
0963469 isStopped 2 Field access
0d1d3be componentIndex 3 Field access
1¢9c47d nextFlags 2 Field access
266e94f STREAMING_.SUBDIR 2 Method invocation

Derby f578f070 stateHoldability 2 Field access
6eb5042 outputPrecision 2 Field access
241733 MAX_OVERFLOW_ONLY_REC_SIZE 3 None
099e28f XML.NAME 3 Field access
81b9853 activation 5 Field access

Mahout Obe2ead LOG 2 Field access
Ofe6a49 FLAG_SPARSE_ROW 2 Field access
22d7d31 namedVector 2 Field access
29af4d7 normalizer 2 Field access
2f7f0dc NUM_GROUPS_DEFAULT 2 None

Empirical Findings

* |In 15 of the 20 examined revisions, the co-

changed methods commonly access existing
field(s).

* For each added field, there are 2to 5
methods co-changed to access the field

* Findings show that when one or more
methods in a cluster are changed to access a
new field, the other methods from the same
cluster are likely to be co-changed for the new
field access

Table 1: Commonality inspection of 20 *CM-AF multi-entity edits

of
Project Commits Added Field Changed Commonality
Methods

Aries 3d072a4 monitor 2 Field access
50ca3da properties 2 Field access
5d334d7 BEAN 2 Method invocation
95766a2 NS_AUTHZ 2 None
9586d78 enlisted 3 Field access

Cassandra 0792766 validBufferBytes 3 Field access
0963469 isStopped 2 Field access
0d1d3bec componentIndex 3 Field access
1¢9¢c47d nextFlags 2 Field access
266e94f STREAMING_SUBDIR 2 Method invocation

Derby f578f070 stateHoldability 2 Field access
6eb5042 outputPrecision 2 Field access
241733 MAX_OVERFLOW_ONLY_REC_SIZE 3 None
099e28f XML.NAME 3 Field access
81b9853 activation 5 Field access

Mahout Obe2ead LOG 2 Field access
Ofe6a49 FLAG_SPARSE_.ROW 2 Field access
22d7d31 namedVector 2 Field access
29af4d7 normalizer 2 Field access
2f7f0dc NUM_GROUPS_DEFAULT 2 None

Approach

* Works in four steps:

1.
2. Naming-Based Filter

3.

4. Peer-Based Method Search

Peer Field identification

Access-Based Filter

(]

CMm1,

N

{

Peer Field Peer-Based 1
Identification Method Search

|

Naming-
Based Filter

Access-Based
Filter

>

Method(s)

to change

CMSuggester

Approach: Peer Field ldentification

* Newly added field: f,, ’[Peer Field] [Peer-Based]__,‘Method(s)

Identif'ication Method Search to change

v
Naming- Access-Based

* Peer fields are used to denote the existing fields that M1, .. | [Based Filter]—{ Filter]
satisfy the following conditions: CMSuggester

* Exists in the same class as f;,

e accessed by one or more changed methods that

also access fj,

* A peer fields set P = {p1, p2,} is created.

Approach: Name-Based Filter

e Considers two naming patterns: Peer Field Peer-Based]___'Method(s)
] T Identification Method Search to change
* Constant fields (Usually capitalize all letters) I i 8
Example:MAX_OVERFLOW _SIZE _l Namin
— — g- Access-Based
c™m], ... [Based Filter }_{ Filter 1
CMSuggester

* Variable fields (Usually have a combination of
lowercase and uppercase letters)
Example:outputPrecision

* Fields are classified to be either constants or variables.

* If f,, is a variable, constants are removed from P (the list
of peer fields), and vice versa.

Approach: Access-Based Filter

* For each methods, accessed fields are classified into the ’[Peer Fiold] [Peer-Based]__' Method(s)
three fo”owing modes: Identification Method Search to change
* Pure Read I Naming- Access-Based
e Pure Write c™mY, ... Based Filter Filter
CMSuggester

* Read and Write

* When a field’s access mode is distinct from that of f,,
CMSuggester removes the field from P.

Approach: Peer-Based Method Search

* For the refined list of peer fields in P: ,[eerfled n] [eerdased s l:gect:::éz)
4
» Search for unchanged methods that access at least l‘ |
. . I Naming- Access-Based
two of the refined fields. cMy, . Based Filter Filter
CMSuggester

* For efficiency, leverage access modifiers to reduce
search space.

Evaluation: Data Set

* For four open source projects (discussed before), search for *CM — AF edits based on the following
criteria:

* Contains at least two methods co-changed for an added field
* Has each changed method accessing at least two existing fields

* A total of 106 commits are retrieved for the four projects.

Evaluation: Data Set

of AF # of AF
40 7 Aries 40 1 . Cassandra
1
30 - 30 A \
|
\
20 20 A '
. \
\
10 A \ 10 - ‘.
\ \\ L
0 -y ’ ; . v .0 ; Yy "ep-e-9-° ’ .
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
of CM # of CM
of AF # of AF
40 1 . 40 A
' Derby Mahout
30 - \ 30
‘I
20 A " 20 1 ™
\ ‘\
10 . 10 \
\ N
\ \
0 : LTI TR LTSy I 0 : L : ' T : \
0 2 4 6 8 10 12 14 0 2 a4 6 8 10 12
of CM

14
of CM

Evaluation: Experimental Setup

* For the experiments, the tasks are divided into three categories:
* one-AF-one-CM (1A1C)
* one-AF-two-CM (1A2CQ)
* one-AF-three-CM (1A3C)

| Aries Cassandra Derby Mahout| Total #

of program commits | 10 45 42 9| 106
of 1A1C suggestion tasks | 39 172 151 4(i| 408
of 1A2C suggestion tasks | 9 237 168 12| 426

of 1A3C suggestion tasks | 4 379 366 8| 757

Evaluation: Metrics

* Coverage
* Precision
* Recall

* F-Score

* Weighted Average

Evaluation: Metrics

* Coverage (later evaluations are limited based on coverage)

of tasks with a tool’s suggestion

* 100%
Total # of tasks

Cv

Evaluation: Metrics

* Precision

of correct suggestions .
i £8 « 100%

~ Total # of suggestions by a tool

Evaluation: Metrics

e Recall

_ # of correct suggestions by a tool

= * 1000/
Total # of expected suggestions (

Evaluation: Metrics

* F-score

)
po2r PR 0%
P+ R

Evaluation: Metrics

* Weighted Average

Siey Li %
i1 M

Ium-rull =

Evaluation: Comparison

* CMSuggester is compared against state-of-the-art co-change suggestion tool: ROSE [10].
* ROSE mines the association rules between co-changed entities from software version histories.

* Example rule mined by ROSE:

{(-Qdmodule.c, funec, GrafObj_getattr())} =
{ (gdsupport.py, func, outputGetattr Hook()). }

Evaluation: Result (1A1C Tasks)

* CMSuggester outperforms ROSE for all the evaluation
metrics.

* Two major reasons:
 Since ROSE depends on version history (which may
be incomplete or some entities may have never been
co-changed before)

* ROSE does not leverage any syntactic or semantic
relation between the co-changed entities and can
infer incorrect rules.

Proiect CMSuggester ROSE
J C P R F| € P R F
Aries 51 68 85 76| 31 35 39 37
Cassan- | «q o1 75 78| 38 53 71 61

dra

Derby 71 71 68 69| 22 25 42 31
Mahout 72 72 68 70 13 5 33 9
WA [[68| 75 72 73| 29| 41 58 |48

Evaluation: Result (1A1C Tasks)

* CMSuggester outperformed ROSE in many 1A1C tasks.

* This shows that CMSuggester complements ROSE by inferring co-changes from methods’ common

field accesses instead of from the history.

Input ' i Suggested methods
| ; to change
AF ' '
' CMSuggester [setup(...) v
namedVector) ' Deer el .
 Peer fields: dimension,
| : sequentialAccess, normPower
I I
M | : ® (No prediction)
reduce(...) ')

CMSuggester outperforms ROSE

Input , Suggested methods

' to change
AF '

compactionStrategy !

™M

createKeySpaces()

I
|

|

|

1

i A CMSuggester ——> @ (No prediction)
|}

I

:

|

1

Session(...)

ROSE outperforms CMSuggester

Evaluation: Result (1A2C and 1A3C Tasks)

* Both CMSuggester and ROSE have obtained similar . CMSuggester ROSE
F-scores. Prefet ' P R _F T P R ¥
Aries 89 35 50 41 0 - - -
Cassandra 76 65 66 65| 31 63 69 66
. . L Derby 96 65 55 60 3 7 15 10
* However, CMSuggester has obtained a significantly Mahout | 100 35 39 37| 0 - - -
higher coverage. WA [85 63 60 61| 8 59 66 62
1A2C Tasks
* Higher coverage shows that it predicted changes
for the majority of tasks CMSuggester ROSE
Project
C P R F C P R F
Aries 100 12 25 16 0 - - -
T . . Cassandr: 75 56 62 59| 33 57 64 60
* ROSE is limited by historical data. ;)::;l)(\l l l(‘)(; (;(; (;1 (;3 0)(’))() N
Mahout |[100 21 25 23] o - - -
WA | 88 61 61 61] 17 57 63 60
* CMSuggester can find more peer fields from more
g8 P 1A3C Tasks

methods provided.

Evaluation: Result (1A2C and 1A3C Tasks)

* CMSuggester predicts better when more CMs are provided as input.

'[: 1A2C task - e 1A3C task :i
Input : ' Suggested Input - 'Suggested methods
: | Wethods to AF | | tochange
_ AF ! : change remaining nl |
remaining " i : :
CM 1 }L MultiPartitionPager(...) | 1 A maxRemaining() v
MultiPartitionPager(...)| | ! CMSuggester ! ® (Nod. ti i CMSuggester
| predeton) LM : : v
&y : : etchPage(...) ! '
| |
fetchPage(...) : : ™ J '
: : state() | 1
M e 1 1

Evaluation: Sensitivity to Filters

Proiect CMSuggester CMSuggester, | CMSuggester,, | CMSuggester,
J CcC P R F/ C P R F/ C P R F/ C P R F

Aries 51 68 85 76| 77 70 83 76| 72 70 86 77| 56 67 86 75
Cassandra 69 81 75 T8| 88 T8 T6 T7| 8 81 T4 T7| 75 79 T6 U7
Derby 71 71 68 69 97 63 60 61 94 66 63 64 73 67 64 65

) 3

Mahout 72 72 68 70| 96 6 57 56 74 T2 68 70| 93 56 57 56
WA |68 75 T2 73| 91| 69 68| 68| 84 73 70 71| 75 71 70 70

* CMSuggester obtained the lowest overall coverage (68%), but the highest overall precision (75%),
recall (72%), and F-score (73%).

* CMSuggester, achieved the highest coverage (91%) but lowest F-score (68%).

* Compared with CMSuggester,, CMSuggester, obtained better coverage, precision, F-score.

Related Work

* Co-change Mining
* Change Recommendation Systems

e Automatic Program Repair (APR)

Related Work

* Co-change Mining:

* Mine version histories for co-change patterns

* These approaches do not analyze any syntactic or semantic relationship between co-changed
modules
e CMSuggester complements these approaches when version history is limited

Related Work

* Change Recommendation Systems:

* Recommend changes based on either the co-occurrence of APIs or code similarity

* In comparison, CMSuggester recommends changes based on the common field accesses
between methods

Related Work

* Automatic Program Repair (APR):

* There are tools proposed to generate candidate patches for certain bugs, and automatically check
patch correctness using compilation and testing.

» Differences with CMSuggester:
* APR focuses on single-entity changes by creating single-method updates from scratch.

* CMSuggester focuses on multi-entity changes by suggesting method changes to complement
already-applied edits

* APR approaches generate concrete and applicable statement-level changes as a candidate fix

* CMSuggester locates methods to change.

Discussion

Possible additions and/or modifications of the filters for better performance.

Extending the tool to handle other popular co-change patterns: *CM - CM, *CM - AM, etc.

Thoughts about the evaluation process (possible weaknesses).

Weaknesses of CMSuggester.

References

1. Christa, S., Madhusudhan, V., Suma, V., Rao, J.J.: Software maintenance: From the perspective of effort and
cost requirement. In: Proc. ICDECT. pp. 759-768 (2017)

2. Zhong, H., Su, Z.: An empirical study on real bug fixes. In: Proc. ICSE. pp. 913-923 (2015)

3. Herzig, K., Just, S., Zeller, A.: It’s not a bug, it’s a feature: how misclassification impacts bug prediction. In:
Proc. ICSE. pp. 392-401 (2013)

4. Park, J., Kim, M., Ray, B., Bae, D.H.: An empirical study of supplementary bug fixes. In: Proc. MSR. pp. 40-49
(2012)

5. Zimmermann, T., Weisgerber, P., Diehl, S., Zeller, A.: Mining version histories to guide software changes. In:
Proc. ICSE. pp. 563-572 (2004)

6. Ying, ATT., Murphy, G.C., Ng, R.T., Chu-Carroll, M.: Predicting source code changes by mining change
history. IEEE Trans. Software Eng. 30(9), 574-586 (2004)

7. Kim, M., Notkin, D.: Discovering and representing systematic code changes. In: Proc. ICSE. pp. 309-319
(2009)

8. . Meng, N., Kim, M., McKinley, K.: Lase: Locating and applying systematic edits. In: Proc. ICSE. pp. 502-511
(2013)

References

9. Wang, Y., Meng, N., Zhong, H.: An empirical study of multi-entity changes in real bug fixes. In: Proc. ICSME
(2018)

10. Zimmermann, T., Weisgerber, P., Diehl, S., Zeller, A.: Mining version histories to guide software changes. In:
Proc. ICSE. pp. 563—-572 (2004)

Thank you

