Secure Coding Practices in Java:
Challenges and Vulnerabilities

Na Meng, Stefan Nagy, Daphne Yao, Wenjie Zhuang, Gustavo Arango Argoty
Presented by: Md Mahir Asef Kabir

Problem Statement

e Java platform and third-party libraries provide security features
e Misusing the features cost time and effort or cause vulnerabilities
o Bypassing certificate validation, Using Broken Hashing algorithm, Disabling
Cross Site Resource Forgery policy etc.
e Prior research focused on misuse of cryptography and SSL APIs
e This paper investigated the common concerns, programming challenges and
security vulnerabilities

Research Questions

e \What are the common concerns on Java secure coding?
o What are the most popular asked about security features?
o What are the Hard-to-implement security defenses in practice?

e \What are the common programming challenges?
o Why developers could not write secure code?

e \What are the common security vulnerabilities?

Background

Stackoverflow posts covered 3 main perspectives

e Java Platform Security
o Areas - Cryptography, Access Control & Secure Communication

e Java EE Security
o Two ways to implement - Declarative Security & Programmatic Security

e Third Party Frameworks
o Spring Security

Approach

Scrapy

java class to trust all for sending file to https web service

A\
a
=" stackoverflow
22,195 Java-Sec Posts

4. | need to write my own class to tell mule that https connection to service
3 (wsdl) is verified. | already have mule project nearly finnished but last piece is
missing, sending file at specific url.

What | want to achieve: @

1 Answer oldest votes

A What worked for me is to set the TrustManagerFactory on the HTTPS
5 connector. Here's how | did it. @

Vi rst, create a keystore that contains the certificate of the SSL server you
Vv want to trust. You can create the keystore using the tools included with the

[*] ttgs //stackoverﬂow desian/brand/logo/ [***] ttgs //www hiclipart. com/free transgarent background- gng-cllgart- csvb
[****] Figure 1 of paper: [A highly viewed post asking about workarounds to bypass key checking and allow all host names for HTTPS]

- 497 Final Posts

https://medium.com/@chetaniam/using-scrapy-to-create-a-generic-and-scalable-crawling-framework-83d36732181
https://stackoverflow.design/brand/logo/
https://www.hiclipart.com/free-transparent-background-png-clipart-jcsvb

Evaluation

Classification hierarchy among 497 posts [*]

All StackOverflow posts (497)

I e

Implementation questions (472) Understanding questions (25)

Tl

Java platform security (140) Java EE security (58) Spring security (261) Other (13)

Configuration (26)
Authorization (16)

Cryptography (64
Access control (43) Other (2)
Secure communication (31) Authentication (219)

[¥] Figure 2 of paper: Taxonomy of StackOverflow posts

Evaluation (Contd.)

- Cryptography, Access Control, Server

Communication [Java Platform Post distribution after 3rd level classification [*]

1 0,
SeCUFIty (30 A))] 2008 W Cryptography
2009 W i Access control
- Authentication, Authorization, 2010 [Sew';wmmu"icaﬁm

. . . . M Java EE security
Configuration [Spring Security (50%)] 2011 —— TR

2012 — — Authorization

- Java EE Security (12%) JENG s oo conteranon

2014 s —

2015 |

- More questions on Java Enterprise Applications ...: v s

[*] Figure 3 of paper: The post distribution during 2008-2016

Evaluation (Contd.)

- Clustered posts based on developers’ attitude Developers’ sentiment on questions
towards the question il Neutral I Positive Favorite
- Defined 3 types of sentiments - neutral, ciptotanti
, favorite Access control , ,
- Secure Communications related questions Secure communication IS
are most favorite (61%) Java EE security
- Developers focus more on security implementation CEMERHCREn
instead of environment settings ihotrzon
Configuration
0% 20% 40% 60% 80% 100%

[*] Figure 3 of paper: The post distribution among developers’ sentiment towards the security features: neutral, positive, and favorite

Common Programming Challenges

1 @EnableWebSecurity

- - 2 public class SecurityConfiguration {
Authentication s " @contiguration @Oxder (1)
4 public static class ApiConfigurationAdapter
5 extends WebSecurityConfigurerAdapter {
6 (@Bean

7 public GenericFilterBean

8 apiAuthenticationFilter () {...}

e Variations in way to integrate Spring

. 9 @Override
Securlty Wlth dlfferent types Of appllcatlons 10 protected void configure(HttpSecurity http)
11 throws Exception {
. . . 12 http . antMatcher ("/ api/++")
e Java and XML-based security configurations ‘addBiltesAfter (apiAuthenticationFilter ()...)
14 .sessionManagement ()...; } }
H 15 @Configuration @Order(2)
hard to Implement CorreCtly 16 public static class WebSecurityConfiguration
. 17 extends WebSecurityConfigurerAdapter {
e Conversion from XML-based to 18 @Bean
19 public GenericFilterBean
H H H 20 webAuthenticationFilter () {...}
Java-based security is tedious n @oyermas
22 protected void configure (HttpSecurity http)
- 23 throws Exception {
& error prone 24 http .antMatcher ("/")
25 .addFilterAfter (webAuthenticationFilter ()...)
26 .authorizeRequests ()...;: } } }

[*] Listing 1 of paper: An exemplar implementation working unexpectedly in Spring Boot applications

Common Programming Challenges (Contd.)

Cryptography

e Error message not providing sufficient hints

- Getting same exceptions for missing steps

e Difficult to implement security with multiple
programming languages

e Implicit constraint on APl usage causing
confusion

[*] Listing 3 of paper: Consistency between the key format and keyspec

2
3

|

// privKey should be in PKCS#8 format
byte[] privKey=...;
PKCS8EncodedKeySpec keySpec=

new PKCS8EncodedKeySpec(privKey):

Common Programming Challenges (Contd.)

Java EE Security

e Developers misunderstand annotations
e Possible to use incorrect conflicting annotations
e No tool for preventing

Access Control

e Effect of access control varies with the program context
e Effect of access control varies with the execution environment

Common Programming Challenges (Contd.)

Secure Communications

e Unable to find valid server certificate
e Accepted answers suggesting to disable SSL verification process

1 // Create a trust manager that does not validate certificate chains

2 TrustManager[] trustAllCerts = new TrustManager[]{

3 new X509TrustManager () {

4 public java.security.cert.X509Certificate []
getAcceptedIssuers () {return null;}

& public void checkClientTrusted (...) {}

& public void checkServerTrusted (...) {} }};

7 // Install the all-trusting trust manager

[*] From Listing 4 of paper: A typical implementation to disable SSL certificate validation

Common Problems from Security Perspectives

Certificate
Authorit

e Disabling Cross-site request forgery protection

e SSL/TLS e

(@) Request foran SSL cert.
o Trusting all SSL certificates an sk cert
o Unaware of the best usages (3 Initiate an S5 connection [
e Password hashing with MDS or SHA-1 Gl e carl
o Vulnerable to dictionary attacks] ®vaidatesstcen

[*] Figure 5 of paper: Simplified overview of creating an SSL connection

Related Works

Analyzing Security Vulnerabilities

e |dentifying Java features whose misuse can compromise security (e.g. - Using
reflection to access normally inaccessible fields) [1]

e Examining vulnerabilities from CVE database to find root-cause [2]

e Clustering security related Stackoverflow posts based on Text [3]

Novelty: In-depth Investigation of programming challenges and security vulnerabilities

Related Works (Contd.)

Detecting Security Vulnerabilities

e Detecting violations of 6 well defined Android cryptographic APl usage rules [4]

e Manually labelling “secure” or “insecure” to train a classifier to efficiently judge the
whole dataset [5]

e Implementing man-in-the-middle attack to reveal vulnerabilities [6]

Novelty: Broader scope (secure coding practice, spring security, poor error message
etc.). Usage of Stackoverflow to provide community perspective of secure coding

Related Works (Contd.)

Preventing Security Vulnerabilities

e Creating a security-oriented subset of Java to enforce secure software
development (e.g. - Allowing least access privilege by default) [7]
e Implementing library to simplify usage of Cryptography [8]

Recommendations

e For security developers
o Conduct security testing to verify feature functionality
o Be cautious when following Stackoverflow accepted answers

e For library designers
o Design clean and helpful error messages
o Design simplified APIs with strong defenses implemented by default

e Fortool builders
o Develop automatic tools to diagnose security errors

Conclusion

e Developers do not appear to understand security implications

e Provided evidence showing Spring Security lacks simplicity and proper
documentation

e Dynamics among asker and responder influence people’s security choice
o Insecure answers from high reputed users get accepted
o Correct answers from low reputed users get ignored by askers

Discussion

e Can we build a tool that can verify if encryption-decryption in different languages
are converting correctly?

e \What are the pros and cons of doing similar research for NodeJS (the most popular
technology in Stack Overflow in 2020)?

References

[1] Fred Long. 2005. Software Vulnerabilities in Java. Technical Report CMU/SEI-2005- TN-044. Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetlD=7573

[2] David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. 2014. Why Does Cryptographic Software
Fail?: A Case Study and Open Problems. In Proceedings of 5th Asia-Pacific Workshop on Systems (APSys
'14). ACM, New York, NY, USA, Article 7, 7 pages. https://doi.org/10.1145/2637166.2637237

[3] Xin-Li Yang, David Lo, Xin Xia, Zhi-Yuan Wan, and Jian-Ling Sun. 2016. What Security Questions Do
Developers Ask? A Large-Scale Study of Stack Overflow Posts. Journal of Computer Science and Technology
31, 5 (01Sep2016),910-924.https://doi.org/10.1007/s11390-016-1672-0

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7573

References (Contd.)

[4] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. 2013. An Empirical Study of
Cryptographic Misuse in Android Applications. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security (CCS '13). ACM, New York, NY, USA, 73—84. https://doi.org/10.1145/ 2508859.2516693

[5] Felix Fischer, Konstantin BAlottinger, Huang Xiao, Christian Stransky, Yasemin Acar, Michael Backes, and Sascha
Fahl. 2017. Stack Overflow Considered Harmful? The Impact of Copy&Paste on Android Application Security. In 38th
IEEE Symposium on Security and Privacy (S&P ’17) (2017-05-22).

[6] Martin Georgiev, Subodh lyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and Vitaly Shmatikov. 2012. The Most
Dangerous Code in the World: Validating SSL Certificates in Non-browser Software. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security (CCS ’12). ACM, New York, NY, USA, 38—49.
https://doi.org/10.1145/2382196.2382204

https://doi.org/10.1145/

References (Contd.)

[7] Adrian Mettler, David Wagner, and Tyler Close. 2010. Joe-E: A Security-Oriented Subset of Java. In
Network and Distributed Systems Symposium. Internet Society. http://www.truststc.org/pubs/652.html

[8] Adrian Mettler, David Wagner, and Tyler Close. 2010. Joe-E: A Security-Oriented Subset of Java. In
Network and Distributed Systems Symposium. Internet Society. http://www.truststc.org/pubs/652.html

http://www.truststc.org/pubs/652.html
http://www.truststc.org/pubs/652.html

Thank you

