
Secure Coding Practices in Java:
Challenges and Vulnerabilities
Na Meng, Stefan Nagy, Daphne Yao, Wenjie Zhuang, Gustavo Arango Argoty
Presented by: Md Mahir Asef Kabir

Problem Statement

● Java platform and third-party libraries provide security features
● Misusing the features cost time and effort or cause vulnerabilities

○ Bypassing certificate validation, Using Broken Hashing algorithm, Disabling
Cross Site Resource Forgery policy etc.

● Prior research focused on misuse of cryptography and SSL APIs
● This paper investigated the common concerns, programming challenges and

security vulnerabilities

Research Questions

● What are the common concerns on Java secure coding?
○ What are the most popular asked about security features?
○ What are the Hard-to-implement security defenses in practice?

● What are the common programming challenges?
○ Why developers could not write secure code?

● What are the common security vulnerabilities?

Background

Stackoverflow posts covered 3 main perspectives

● Java Platform Security
○ Areas - Cryptography, Access Control & Secure Communication

● Java EE Security
○ Two ways to implement - Declarative Security & Programmatic Security

● Third Party Frameworks
○ Spring Security

Approach

[*] https://medium.com/@chetaniam/using-scrapy-to-create-a-generic-and-scalable-crawling-framework-83d36732181
[**] https://stackoverflow.design/brand/logo/ [***] https://www.hiclipart.com/free-transparent-background-png-clipart-jcsvb
[****] Figure 1 of paper: [A highly viewed post asking about workarounds to bypass key checking and allow all host names for HTTPS]

22,195 Java-Sec Posts

Not Useful
No Code
Not Irrelevant

497 Final Posts

https://medium.com/@chetaniam/using-scrapy-to-create-a-generic-and-scalable-crawling-framework-83d36732181
https://stackoverflow.design/brand/logo/
https://www.hiclipart.com/free-transparent-background-png-clipart-jcsvb

Evaluation

[*] Figure 2 of paper: Taxonomy of StackOverflow posts

Classification hierarchy among 497 posts [*]

Evaluation (Contd.)

- Cryptography, Access Control, Server
Communication [Java Platform
Security (30%)]

- Authentication, Authorization,
Configuration [Spring Security (50%)]

- Java EE Security (12%)

- More questions on Java Enterprise Applications

Post distribution after 3rd level classification [*]

[*] Figure 3 of paper: The post distribution during 2008-2016

Evaluation (Contd.)

- Clustered posts based on developers’ attitude
towards the question

- Defined 3 types of sentiments - neutral,
positive, favorite

- Secure Communications related questions
are most favorite (61%)

- Developers focus more on security implementation
instead of environment settings

Developers’ sentiment on questions

[*] Figure 3 of paper: The post distribution among developers’ sentiment towards the security features: neutral, positive, and favorite

Common Programming Challenges

Authentication

● Variations in way to integrate Spring
security with different types of applications

● Java and XML-based security configurations
hard to implement correctly

● Conversion from XML-based to
Java-based security is tedious
& error-prone

[*] Listing 1 of paper: An exemplar implementation working unexpectedly in Spring Boot applications

Common Programming Challenges (Contd.)

Cryptography

● Error message not providing sufficient hints
- Getting same exceptions for missing steps

● Difficult to implement security with multiple
programming languages

● Implicit constraint on API usage causing
confusion

[*] Listing 3 of paper: Consistency between the key format and keyspec

Java EE Security

● Developers misunderstand annotations
● Possible to use incorrect conflicting annotations
● No tool for preventing

Access Control

● Effect of access control varies with the program context
● Effect of access control varies with the execution environment

Common Programming Challenges (Contd.)

Secure Communications

● Unable to find valid server certificate
● Accepted answers suggesting to disable SSL verification process

Common Programming Challenges (Contd.)

[*] From Listing 4 of paper: A typical implementation to disable SSL certificate validation

Common Problems from Security Perspectives

● Disabling Cross-site request forgery protection
● SSL/TLS

○ Trusting all SSL certificates
○ Unaware of the best usages

● Password hashing with MD5 or SHA-1
○ Vulnerable to dictionary attacks

[*] Figure 5 of paper: Simplified overview of creating an SSL connection

Related Works

Analyzing Security Vulnerabilities

● Identifying Java features whose misuse can compromise security (e.g. - Using
reflection to access normally inaccessible fields) [1]

● Examining vulnerabilities from CVE database to find root-cause [2]
● Clustering security related Stackoverflow posts based on Text [3]

Novelty: In-depth Investigation of programming challenges and security vulnerabilities

Related Works (Contd.)

Detecting Security Vulnerabilities

● Detecting violations of 6 well defined Android cryptographic API usage rules [4]
● Manually labelling “secure” or “insecure” to train a classifier to efficiently judge the

whole dataset [5]
● Implementing man-in-the-middle attack to reveal vulnerabilities [6]

Novelty: Broader scope (secure coding practice, spring security, poor error message
etc.). Usage of Stackoverflow to provide community perspective of secure coding

Related Works (Contd.)

Preventing Security Vulnerabilities

● Creating a security-oriented subset of Java to enforce secure software
development (e.g. - Allowing least access privilege by default) [7]

● Implementing library to simplify usage of Cryptography [8]

Recommendations

● For security developers
○ Conduct security testing to verify feature functionality
○ Be cautious when following Stackoverflow accepted answers

● For library designers
○ Design clean and helpful error messages
○ Design simplified APIs with strong defenses implemented by default

● For tool builders
○ Develop automatic tools to diagnose security errors

Conclusion

● Developers do not appear to understand security implications

● Provided evidence showing Spring Security lacks simplicity and proper
documentation

● Dynamics among asker and responder influence people’s security choice
○ Insecure answers from high reputed users get accepted
○ Correct answers from low reputed users get ignored by askers

Discussion

● Can we build a tool that can verify if encryption-decryption in different languages
are converting correctly?

● What are the pros and cons of doing similar research for NodeJS (the most popular
technology in Stack Overflow in 2020)?

References

[1] Fred Long. 2005. Software Vulnerabilities in Java. Technical Report CMU/SEI-2005- TN-044. Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7573

[2] David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. 2014. Why Does Cryptographic Software
Fail?: A Case Study and Open Problems. In Proceedings of 5th Asia-Pacific Workshop on Systems (APSys
’14). ACM, New York, NY, USA, Article 7, 7 pages. https://doi.org/10.1145/2637166.2637237

[3] Xin-Li Yang, David Lo, Xin Xia, Zhi-Yuan Wan, and Jian-Ling Sun. 2016. What Security Questions Do
Developers Ask? A Large-Scale Study of Stack Overflow Posts. Journal of Computer Science and Technology
31, 5 (01Sep2016),910–924.https://doi.org/10.1007/s11390-016-1672-0

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7573

References (Contd.)

[4] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. 2013. An Empirical Study of
Cryptographic Misuse in Android Applications. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security (CCS ’13). ACM, New York, NY, USA, 73–84. https://doi.org/10.1145/ 2508859.2516693

[5] Felix Fischer, Konstantin BÂĺottinger, Huang Xiao, Christian Stransky, Yasemin Acar, Michael Backes, and Sascha
Fahl. 2017. Stack Overflow Considered Harmful? The Impact of Copy&Paste on Android Application Security. In 38th
IEEE Symposium on Security and Privacy (S&P ’17) (2017-05-22).

[6] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and Vitaly Shmatikov. 2012. The Most
Dangerous Code in the World: Validating SSL Certificates in Non-browser Software. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security (CCS ’12). ACM, New York, NY, USA, 38–49.
https://doi.org/10.1145/2382196.2382204

https://doi.org/10.1145/

References (Contd.)

[7] Adrian Mettler, David Wagner, and Tyler Close. 2010. Joe-E: A Security-Oriented Subset of Java. In
Network and Distributed Systems Symposium. Internet Society. http://www.truststc.org/pubs/652.html

[8] Adrian Mettler, David Wagner, and Tyler Close. 2010. Joe-E: A Security-Oriented Subset of Java. In
Network and Distributed Systems Symposium. Internet Society. http://www.truststc.org/pubs/652.html

http://www.truststc.org/pubs/652.html
http://www.truststc.org/pubs/652.html

Thank you

