
A Graph-based Approach to
API Usage Adaptation
Authors: Nguyen, Hoan Anh, et al

Presenter: Zongtao Lin

Background

Application Programming Interfaces (API) is an interface that defines interactions between

multiple software components and resources. It defines the kinds of calls or requests that can be

made, how to make them, the data formats that should be used, the conventions to follow, etc.

API can be updated or changed by declaring new attributes, accommodating the internal logic,

etc.

Problem statement

Reusing existing library components can highly reduce cost of software development and

maintenance. However, library components evolve might lead to complex API change. It might

lead to existing client break. Thus, the client’s codes are also need to be changed to
corresponding the library change.

Existing limitation

Some existing research techniques require library maintainers and client application developers to use the

same development environment to record and replay refactorings. → ideal case, not happen commonly

Existing API usage modeling and extraction techniques are limited by simplified representations such as a
sequence of method calls. → Cannot handle complex control and data dependencies of API usage

Proposing a set of graph-based models and algorithms to capture updates in evolving libraries and updates
in client applications associated with changes in the libraries.

Another algorithm to summarize edit operations from API usage code samples before and after library
migration.

Approach

Four main approaches:

1. Origin Analysis Tool (OAT): A tree-based origin analysis technique maps corresponding code

elements between two versions.
2. Client API Usage Extractor (CUE): A graph-based representation that extracts API usage

skeletons from client code and the use of APIs within the library.
3. Usage Adaptation Miner (SAM): A graph alignment algorithm can identify API usage changes and

mine the adaptation patterns from a set of API usages by another algorithm.

4. LIBSYNC: A tool provide recommend locations and edit operations for adapting API usage code in
the client.

Motivation Example

JBoss is a large Java project. It has about 40,000 methods and uses up to 262 different libraries. If one

external API library were changed, JBoss might need to have some API usage adaptations. The approach
author proposed could save a lot of time for JBoss maintenance.

The API usage adaption is mainly composed with two types: invocations and inheritance.

API Usage via Method Invocations

API Usage via Method Inheritance

Object-oriented programming pattern

Object-oriented programming has two common ways to use the API functionality

● Method invocation: directly calling to API methods or creating objects of API classes
● Inheritance: declaring classes in client code that inherit from the API classes and override their

methods

Based on those patterns, API usage adaptation model can capture complex context surrounding API

usages by

● Data and ordering dependencies among API usages
● Control structures around API usages
● Interaction among multiple objects of different types

Origin Analysis Tool (OAT)

The purposes of OAT: to identify modification to API declarations between two versions of a library and

to map corresponding API usage code fragments between two versions of a client

OAT views a program P (either a library or client) as a project tree T(P) which has three attributes:

• Declaration (declare(u))

• Parent (parent(u))

• Content (content(u)):

Origin Analysis Tool (OAT) — Similarity

How to measure the similarity between two nodes?

Declaration attribute similarity

Content attribute similarity

Origin Analysis Tool (OAT) — Mapping Algorithm

OAT classified each node into three categories.

● AM nodes, node already mapped to another node

● PM nodes, its parent node is mapped but it is not
mapped to any node

● UM nodes, the node and its parent are not mapped

After a UM node were mapped with another node, both
node will classified into AM nodes and their sub nodes
will become PM nodes.

Client API Usage Extractor (CUE) — i-Usage Model

CUE represents the API i-usages in clients via a graph-based model called iGROUM (invocation-based,

GRaph-based Object Usage Model)

Client API Usage Extractor (CUE) — i-Usage Model

Client API Usage Extractor (CUE) — x-Usage Model

CUE use xGROUM (Extension-based, GRaph-based Object Usage Model) to represent all API x-usages in

the client system and and all libraries by considering each library a sub-system of the client system under
investigation

There are two kinds of edges: o-edge (overriding) and i-edge (inheriting)

Client API Usage Extractor (CUE) — x-Usage Model

Usage Adaptation Miner (SAM)

SAM uses iGROUMs to represent API i-

usages in client codes. SAM also uses a
graph alignment algorithm to identify
API i-usage changes, and then use a
mining algorithm to find API usage
adaptation patterns.

Usage Adaptation Miner (SAM)

Recommending Adaptations (LIBSYNC)

Locate the recommendation location by Client API update extractor (CUE).

Based on iGROUM or xGROUM find the i-usage or x-usage recommendation pattern.

Those patterns were mined by Usage Adaptation Miner(SAM).

Finally, provide suggestion on exact location with mined pattern.

Experiment Evaluation
Quality of change detection in OAT: Precision = # of correctly detected / # of total

TP = # of correct pairs / # of total

FP = # of incorrect pairs / # of total

Experiment Evaluation

Experiment Evaluation

Use precision to evaluate performance of i-Usage changes detection

Experiment Evaluation

Related Work

The author made a lot of comparisons with existing similar method in each stage.

The author’s approaches is different from others because it use graph-based representation to extracts

API usage which increase the accuracy of API usage adaptation. The author use two metrics to calculate
similarity in OAT which outperform than others.

Conclusion

The author present tool LIBSYNC which can adapting API usages in client code along with libraries

evolution. LIBSYNC uses several graph-based techniques and tree-based techniques to increase its
accuracy and precision.

By comparing LIBSYNC with other existing techniques, LIBSYNC performs better than others in overall
perspective.

Discussion

● Any flaws on author’s approaches?

● Will you use this tools on programming?
● Any other new approaches for API usage adaption?

Thank you !

