A Graph-based Approach to
APl Usage Adaptation

Authors: Nguyen, Hoan Anh, et al

Presenter: Zongtao Lin

Background

Application Programming Interfaces (API) is an interface that defines interactions between
multiple software components and resources. It defines the kinds of calls or requests that can be
made, how to make them, the data formats that should be used, the conventions to follow, etc.

API can be updated or changed by declaring new attributes, accommodating the internal logic,
etc.

Problem statement

Reusing existing library components can highly reduce cost of software development and
maintenance. However, library components evolve might lead to complex APl change. It might
lead to existing client break. Thus, the client’s codes are also need to be changed to
corresponding the libre—--%~-~-

|
| XYSeries set = new XYSeries(attribute,false, | false |);
for (inti=0; i < data.size(); i++)
set.add(new Integer(i), (Number)data.get(i));
| DefaultTableXYDataset dataset = new DefaultTableXYDataset(set | false |);
I

dataset.addSeries(set) |;
JFreeChart chart = ChartFactory.createXYLineChart(..., dataset,...);

SN B W -

Figure 1. API usage adaptation in JBoss caused by the
evolution of JFreeChart

Existing limitation

Some existing research techniques require library maintainers and client application developers to use the
same development environment to record and replay refactorings. — ideal case, not happen commonly

Existing APl usage modeling and extraction techniques are limited by simplified representations such as a
sequence of method calls. — Cannot handle complex control and data dependencies of APl usage

Proposing a set of graph-based models and algorithms to capture updates in evolving libraries and updates
in client applications associated with changes in the libraries.

Another algorithm to summarize edit operations from APl usage code samples before and after library
migration.

Approach

Four main approaches:

1. Origin Analysis Tool (OAT): A tree-based origin analysis technique maps corresponding code
elements between two versions.

2. Client APl Usage Extractor (CUE): A graph-based representation that extracts APl usage
skeletons from client code and the use of APIs within the library.

3. Usage Adaptation Miner (SAM): A graph alignment algorithm can identify APl usage changes and
mine the adaptation patterns from a set of API usages by another algorithm.

4. LIBSYNC: A tool provide recommend locations and edit operations for adapting APl usage code in
the client.

Motivation Example

JBoss is a large Java project. It has about 40,000 methods and uses up to 262 different libraries. If one
external API library were changed, JBoss might need to have some API usage adaptations. The approach
author proposed could save a lot of time for JBoss maintenance.

The APl usage adaption is mainly composed with two types: invocations and inheritance.

[R . S

APl Usage via Method Invocations

added code

pd

XYSeries set = new XYSeries(attribute,false,);‘/

for (inti=0;i < data.size(); i++)
set.add(new Integer(i), (Number)data.get(i));

DefaultTableXYDataset dataset = new DefaultTableXYDataset(set);

dataset.addSeries(set) |;

JFreeChart chart = ChartFactory.createXYLineChart(..., dataset,...);

AN

Figure 1. API usage adaptation in JBoss caused by the

evolution of JFreeChart

=
I SnmpPeer peer=new SnmpPeer(this.address |
J[this.port, this.localAddress, this.localPort

|

Figure 2. API usage adaptation in JBoss caused by the
evolutipbn of OpenNMS

~

deleted code

APl Usage via Method Inheritance

Change in Apache Axis API

package org.apache.axis.encoding;
class Serializer ...{

| public abstract beolean | Element | writeSchema(Class c, | Types 1)...

Change in JBoss

package org.jboss.net.jmx.adaptor;
class AttributeSerializer extends Serializer {

| public beetean writeSchema(Types types)...

class ObjectNameSerializer extends Serializer {

| public bootean writeSchema(Types types)...

Figure 3. API usage adaptation in JBoss caused by the

evolution of Axis

Change in Apache Axis API

package org.apache.axis.providers.java;
class EJBProvider ... {

protected Objectget-NewSewieeijeeﬂ makeNewServiceObject |(...)

Change in JBoss

package org.jboss.net.axis.server;
class EJBProvider extends org.apache.axis.providers.java.EJBProvider {

protected Object gefNewSefweeeb]eef| makeNewServiceObject |(...)

Figure 4. API usage adaptation in JBoss caused by the
evolution of Axis

Object-oriented programming pattern

Object-oriented programming has two common ways to use the API functionality

e Method invocation: directly calling to APl methods or creating objects of API classes
e Inheritance: declaring classes in client code that inherit from the API classes and override their
methods

Based on those patterns, APl usage adaptation model can capture complex context surrounding API
usages by

e Dataandordering dependencies among APl usages
e Control structures around APl usages
e Interaction among multiple objects of different types

Origin Analysis Tool (OAT)

The purposes of OAT: to identify modification to APl declarations between two versions of a library and
to map corresponding APl usage code fragments between two versions of a client

OAT views a program P (either a library or client) as a project tree T(P) which has three attributes:
e Declaration (declare(u))
e Parent (parent(u))

e Content (content(u)):

Origin Analysis Tool (OAT) — Similarity

/ . y
How to measure the similarity between two nodes? ~ Sa(u,uw') = 0.25 * strSim(returntype, returntype’)
. _ o + 0.5 * seqSim(name, name’)
Declaration attribute similarity Sd . ,
+ 0.25 * seqSim(parameters, parameters’)

Content attribute similarity Sc

2 % ||Common(v(u),v(u"))||1
[v(u)|[1 + [[v(w)]]1

se(u, u') =

2 x | MaxMatch(content(C), content(C"), sim)|
lcontent(C')| + |content(C")|

s.(C,C") =

Origin Analysis Tool (OAT) — Mapping Algorithm

OAT classified each node into three categories.

e AM nodes, node already mapped to another node

e PM nodes, its parent node is mapped but it is not
mapped to any node

e UM nodes, the node and its parent are not mapped

After a UM node were mapped with another node, both
node will classified into AM nodes and their sub nodes
will become PM nodes.

00NN WN -

10
11
12
13
14
15
16
17
18
19

function Map(T', T") // find mapped nodes and change operations

UM addAI(T, T")

for packages p € T, p’ € T' // map on exact location
if location of v and v/ is identical then Map(p, p)

for packagesp € TNUM, p' € T' N UM // unmapped pkgs
if Sim(p,p’) > & then SetMap(p, p’) #/ map on similarity

for each mapped pairs of packages (p,p’) € M
MapSets(Children(p), Children(p’))) #/ map parent—mapped

classes

for classes C € TNUM, C" € T" N UM // unmapped classes
if (C and C’ are in a text—based/LSH—based filtered subset
and sim(C, C") > 6) then SetMap(C, C") / map on similarity

for each mapped pairs of classes (C,C’) € M
MapSets(Children(C'), Children(C"))) / parent—mapped meths

for methods m € TNUM,m' € T N UM // unmapped meths
if (m and m/ are in a text—based or LSH—based filtered subset
and sim(m,m’) > § and dsim(m, m’) > p then

SetMap(m, m’) // map on similarity
Op = ChangeOperation(M)
return M, Op

Client API Usage Extractor (CUE) — i-Usage Model

CUE represents the APl i-usages in clients via a graph-based model called iGROUM (invocation-based,
GRaph-based Object Usage Model)

DEFINITION 1 (iGROUM). An invocation-based, graph-
based object usage model is a directed, labeled, acyclic
graph in which:

1. Each action node represents a method call;

2. Each data node represents a variable;

3. Each control node represents the branching point of a
control structure (e.g. if, for, while, switch);

4. An edge connecting two nodes x and v represents the
control and data dependencies between x and y; and

5. The label of an action, data, control, and operator node
is the name, data type, or expression of the corresponding
method, variable, control structure, or operator, along with
the type of the corresponding node.

Client API Usage Extractor (CUE) — i-Usage Model

a) s b) s'
m XYSeries.<init> @ XYSeries.<init>
'

(ArrayList.size

Cooolears” /4

ArrayList.size

" G |

=
[DefauItTableXYDataset.addSeries v/
Figure 7. API i-Usage models in JBoss before and after migration to a new JFreeChart library version

Client APl Usage Extractor (CUE) — x-Usage Model

CUE use xGROUM (Extension-based, GRaph-based Object Usage Model) to represent all APl x-usages in
the client system and and all libraries by considering each library a sub-system of the client system under
investigation

There are two kinds of edges: o-edge (overriding) and i-edge (inheriting)

L) Axis_old L") Axis_new

[BasicProvider] (BSFProvider] [ComProvider]

[BasicProvider] [BSFProvider] [ComProvider]

EJBProvider

(MsgProvider |

I RPCProvider l [JavaProvider] RPCProvider I

[JavaProvider] [MsgProvider] EJBProvider

o

getNewServiceObject getStrOption getServiceClass getEJBHome <init> ||| makeNewServiceObject getStrOption getServiceClass getEJBHome
(Context, String) (String, Handler) ||| (Context, Stnng) (Context, String) () (Context, String) (String, Handler) ||{ (String, SOAP,Context) (SOAP,Context,String)
T rename f l change visibility “ k‘ f ’4 ?
Y Y / J / add parameter
J ! add parameter

[org.jboss.net.axis.server] [org.jboss.net.axis.server]

EJBProvider

— \w.

{2

L.

- —-— ~
<init> getNewServiceObject getStrOption getServiceClass getEJBHome <init> makeNewServnceObJect getStrOptnon getServiceClass getEJBHome getContext
() (Context, String) (String, Handler) (Context, String) (Context, String) () (Context, Strmg) (String, Handler) (String, SOAP,Context) (SOAP,Context,String) (Properties)
t fename add parameter

generateWSDL generateWSDL
(Context) (Context)

C) jBoss_old C') jBoss_new
Figure 8. API x-Usage models in JBoss before and after migration to a new Axis library version

Usage Adaptation Miner (SAM)

SAM uses iIGROUMs to represent APl i-
usages in client codes. SAM also uses a
graph alignment algorithm to identify
APl i-usage changes, and then use a
mining algorithm to find APl usage
adaptation patterns.

DO

0NN B W

11
12
13
14

function GroumDiff(U, U") // align and differ two usage models
for all u € U,v € U’ // calculate similarity between u and v
based on label and structure
sim(u,v) = a o lsim(u,v) + 3 ® nsim(u,v)
M =MaximumWeightedMatching(U, U’, sim) // matching
for each (u,v) € M:
if sim(u,v) < A then M.remove((u,v)) /remove low matches
else switch // derive change operations on nodes
case Attr(u) # Attr(v): Op(u) = Op(v) = “‘replaced’’
case Attr(u) = Attr(v),nsim(u,v) < 1: Op(u)="‘updated”’
default: Op(u) = “‘unchanged’’
for eachu € U,u ¢ M: Op(u) = “*deleted’’ // unaligned nodes
for eachv € U',v & M: Op(v) = ‘“‘added’’ // are deleted/added
Ed = EditScript(Op)
return M, Op, Ed

Figure 9. API Usage Graph Alignment Algorithm

Usage Adaptation Miner (SAM)

function ChangePattern(A P;, AL;) //mine usage change patterns
for each (U, U’) € UsageChange(AP;, AL;) //compute changes
Add(GroumDiff(U, U")) into E // add to dataset of sets of ops
F' = MaximalFrequentSet(E, o) /mine maximal frequent subset
of edit operations
for each f € F"
Find U, U’ : f C GroumDiff(U, U") //find usages changed by f
Extract (U, (f),UL(f)) from (U, U") // extract ref models
Add (U, (f),UL(f)) into Ref(f) // add to reference set for f
return F, Ref

= W -

O 00 1 O\ Wn

Figure 11. Adaptation Pattern Mining Algorithm

Recommending Adaptations (LIBSYNC)

Locate the recommendation location by Client APl update extractor (CUE).
Based on iGROUM or xGROUM find the i-usage or x-usage recommendation pattern.
Those patterns were mined by Usage Adaptation Miner(SAM).

Finally, provide suggestion on exact location with mined pattern.

Experiment Evaluation

Quality of change detection in OAT: Precision = # of correctly detected / # of total

TP =# of correct pairs / # of total

FP =# of incorrect pairs / # of total

Table 1. Precision of Origin Analysis Tool OAT

Version Pairs | Mapped | Checked vV | X Precision
5.2-5.3 71 71 69 2 97%
5.3-5.4bl 70 70 68 2 97%
5.4b1-5.4b2 9 9 8 1 89%
5.4b2-6.0bl 3,250 100 100 0 100%

Table 2. Comparison of Origin Analysis Tools

JFreeChart

Pairs OAT Kim n OAT - Kim Kim - OAT
> Vv X ? TP FP |) Vv X ? TP FP
0.9.5-0.9.6 5 5 5 0 0 0 0 [100% | 0% 0 0 0 0 [100% 0%
0.9.6-0.9.7 368 366 364 4 2 I I | 50% | 25% 2 0 0 2 0% 0%
0.9.7-0.9.8 3157 3158 3121 36 36 0 0 | 100% | 0% 37 7 30 0| 19% | 81%
0.9.9-0.9.10 144 159 130 14 3 10 1 | 21% | 71% 29 14 2 13 | 48% 7%
0.9.10-0.9.11 9 7 7 2 2 0 0 | 100% | 0% 0 0 0 0 | 100% 0%
0.9.11-0.9.12 66 66 35 31 12 10 9 | 39% | 32% 31 19 6 6 | 61% 19%
0.9.12-0.9.13 134 133 133 I I 0 0 | 100% | 0% 0 0 0 0 | 100% 0%
0.9.13-0.9.14 84 96 74 10 6 3 I | 60% | 30% 22 12 6 4| 55% | 27%
0.9.14-0.9.15 6 12 6 0 0 0 0 | 100% | 0% 6 6 0 0 | 100% 0%
0.9.15-0.9.16 79 75 65 14 13 0 | 9% | 0% 10 2 4 4 20% | 40%
0.9.16-0.9.17 205 240 171 34 4 30 0 | 12% | 88% 69 27 Iy) 0 | 39% | 61%
0.9.17-0.9.18 36 45 36 0 0 0 0 | 100% | 0% 9 0 9 0 0% | 100%
0.9.18-0.9.19 140 282 102 38 30 8 0 | 79% | 21% 180 41 139 0 | 23% | 71%
Avg. | 341.00 | 357.23 | 32685 | 14.15 | 838 | 477 | 1.00 | 73% | 21% | 30.38 | 9.85 | 1831 | 223 | 51% | 32%

JHotDraw

Pairs OAT Kim n OAT - Kim Kim - OAT
> v | X ? ™ | FP|) v X ? TP FP
5253 71 77 66 5 3 2 0 | 60% | 40% 11 2 4 5 18% | 36%
5.3-5.4bl 70 69 56 14 12 I I 86% | 1% 13 5 6 2 | 38% | 46%
5.4b1-5.4b2 9 13 8 I I 0 0 | 100% | 0% 5 3 I I | 60% | 20%
5.4b2-6.0b1 3250 | 3,239 | 3,239 I I 0 0 | 100% | 0% 0 0 0 0 | 100% 0%
Avg. 850 | 849.5 | 84225 | 7.75 | 6.75 | 0.75 | 025 | 86% | 12% | 7.25 | 2.5 | 275 2 | 54% | 26%

Experiment Evaluation

Use precision to evaluate performance of i-Usage changes detection

Table 4. Precision of API Usage Change Detection

Client Changes | Libs | Operations API
Vv X vV | X
JasperReports 30 5 | 30 0 | 27 3
JBoss 40 17 | 38 2 | 38 2
Spring 30 15 | 30 0 | 30 0

Experiment Evaluation

Table S. Accuracy of 1-Usage Location Recommendation

API - Client Version | Rec. | 4/ | Hint | X | Miss
JFree - Jasper 3.0.1-3.1.0 12 9 3 0 0
Mondrian - Jasper 1.34-2.0.0 3 3 0 0 0
Axis - JBoss 3.25-4.0.0 8 5 1 2 0
Hibernate - JBoss 420-4.2.1 29 | 25 0 3 1
JDO2 - Spring | 2.0ml - 2.0m2 8 8 0 0 0
JRuby - Spring 203-204 7 7 0 0 0

Related Work

The author made a lot of comparisons with existing similar method in each stage.

The author’s approaches is different from others because it use graph-based representation to extracts
APl usage which increase the accuracy of APl usage adaptation. The author use two metrics to calculate
similarity in OAT which outperform than others.

Conclusion

The author present tool LIBSYNC which can adapting APl usages in client code along with libraries
evolution. LIBSYNC uses several graph-based techniques and tree-based techniques to increase its
accuracy and precision.

By comparing LIBSYNC with other existing techniques, LIBSYNC performs better than others in overall
perspective.

Discussion

e Any flaws on author’s approaches?
e Will you use this tools on programming?
e Any other new approaches for APl usage adaption?

Thank you !

