
An Empirical Study of Multi-
Entity Changes in Real Bug Fixes

By Ye Wang, Na Meng and Hao Zhong

Bug fixing and automated tools

� Similar bugs occurs again and again

� Similar bug fixing pattern can be
repeatedly used.

� Researchers proposed various tools to
generate bug fixes or suggest customized
edits

Automatic program repair (APR)

� Automatic program executes a buggy program P
with a test suite T, and leverages bug localization
techniques to locate a buggy method.

� APR then creates candidate patches to fix the bug,
and validates patches via compilation and testing
until obtaining a patched program that passes T.

� Different APR approaches generate patches either by
randomly mutating code, creating edits from the
recurring change patterns of past fixes, or solving the
constraints revealed by passed and failed tests .

� However, each fix suggested by current APR
approaches only modifies a single method.

Single or Multiple?

� The fixes that these tools focus on are
limited to code changes within single
methods or edits solving single software
faults

� The majority of real fixes solve multiple
software faults together

Problem

� Is there any repeated bug-fixing pattern
that repetitively applies similar sets of
relevant edits to multiple program
entities?

Approaches

� Study on 2,854 bug fixes from 4 projects
◦ Aries, Cassandra, Derby, Mahout

� Tool: InterPart
◦ Doing static analysis to identify the syntactic

dependency relationships

� Change Dependency Graphs

Change Dependency Graphs

� Vertices:Changed Program Entity/Atomic
Changes
◦ A(Added),/D(Deleted)/C(Changed)
◦ +
◦ C(Class)/M(Method)/F(Field)
◦ Except CF

� Edges: Syntactic dependency relationship
◦ Containing
◦ Overridding
◦ Accessing

Definition of CDG

� CDG =< V, E >, where V is a set of
vertices representing changed entities,
and E is a set of directed edges between
the vertices E ⊆ {V ×V }. There is a
directed edge from changed entity u to
changed entity v, if and only if u is
syntactically dependent on v.

A simple CFG

Change Pattern

� Given CDG =< V, E >, cp =< V 0 , E0 >,
where V 0 ⊆V and E0 ⊆ E. A cp should
contain at least two nodes and one edge
connecting the nodes.

Recurring Change Pattern

� Suppose that the CDGs of code revisions
r1 and r2 are GS1 = {cdg11, . . . , cdg1m}
and GS2 = {cdg21, . . . , cdg2n}. If a change
pattern cp occurs in both cdg1i and cdg2j
(i ∈ [1, m] and j ∈ [1, n]), we say that the
change pattern is also an rcp.

A simple RCP

InterPart
� Implementation strategy : Incomplete Static Analysis

� Construct CDG
◦ Extracting Changed Entities

◦ Correlating Changed Entities

� Extracting Recurring Change Pattern

Research Question

� RQ1: What is the frequency of multi-
entity bug fixes?

� RQ2: What patterns are contained by
multi-entity fixes?

� RQ3: Why do programmers make
multiple-entity changes, when they fix real
bugs?

The datasets

� Aries, Cassandra, Derby, and Mahout
◦ From different application domains
◦Well-maintained issue tracking systems and

version control systems
◦ Many bug-fixing commits refer to the

corresponding bug reports via issue IDs

What is the frequency of multi-
entity bug fixes?

What is the frequency of multi-
entity bug fixes?

� Similar to the fixes generated by APR
approaches, real bug fixes also mainly
consist of CMs. However, real fixes usually
involve a much more diverse set of
entities and change types, such as AMs
and AFs.

What is the frequency of multi-
entity bug fixes?

What is the frequency of multi-
entity bug fixes?

What is the frequency of multi-
entity bug fixes?

� Differing from the fixes generated by
APR approaches, over half of the real fixes
mainly involve multientity instead of
single-method changes.

What is the frequency of multi-
entity bug fixes?

What is the frequency of multi-
entity bug fixes?

What is the frequency of multi-
entity bug fixes?

� Among the fixes with multi-entity
changes, 66- 76% of the fixes contain
related changed entities, and 76- 83% of
such fixes have entities connected in one
or more CDGs. This indicates that
comparison/recommendation tools that
relate co-applied changes will be valuable

What patterns are contained by
multi-entity fixes?

What patterns are contained by
multi-entity fixes?

� The fix patterns of multi-entity changes
commonly exist in all the investigated
projects. This indicates that such patterns
may be usable to guide APR approaches
and to generate patches changing multiple
entities.

What patterns are contained by
multi-entity fixes?

What patterns are contained by
multi-entity fixes?

What patterns are contained by
multi-entity fixes?

� Four out of the six most frequent fix
patterns apply multiple CM changes. It
indicates that existing APR approaches
can be extensible to generate multi-entity
fixes by modifying several methods that
call the same changed method or access
the same added field.

Why do programmers make
multiple-entity changes, when they
fix real bugs?

� Two case studies
◦ 1.Examining 291 fixes that contained any of

P1-P3, and explored why and how the multi-
entity changes were applied
◦ 2. Extracted the entity pairs that were

repetitively co-changed in version history, and
inspected 20 of such pairs to investigate any
characteristics.

Case Study 1

Case Study 1

� Scenarios for P1 (*CM→CM(invocation))
◦ 23% : developers applied consistent changes

to these methods.
◦ 17% : developers changed caller methods
◦ 17% : developers changed the implementation

logic of callees
◦ 43% :no obvious relationship between the

edits in co-changed methods

Case Study 1

� Scenarios for P2 (*CM→AM(invocation))
◦ 28% : developers added the new method for

refactoring purposes
◦ 72% : developers added a method to

implement new logic, and changed current
methods to invoke the added method

Case Study 1

� Scenarios for P3 (*CM→AF(access)).
◦ 9% : developers added a field for refactoring
◦ 25% : developers applied changes to enhance

existing features
◦ 66% : developers applied changes to add new

features

Case Study 1

� Among P1-P3, we did not see any
identical fixes. It means that APR
approaches are unlikely to independently
suggest a correct multi-entity fix purely
based on past fixes, although it is still
feasible for new tools to help complete
developers’ fixes.

Case Study 2

Case Study 2

Case Study 2

� The repetitively co-changed entities
usually share common characteristics like
similar content, relevant field usage, or
identical method invocations, among
which the similar usage of fields or
methods has not been leveraged to
automatically complete developers’ fixes.

Related Works

� Among P1-P3, we did not see any
identical fixes. It means that APR
approaches are unlikely to independently
suggest a correct multi-entity fix purely
based on past fixes, although it is still
feasible for new tools to help complete
developers’ fixes.

Related Works

� Empirical Studies on Code Changes

� What’s new:
◦ Examining reasons to explain the co-changed

related entities
◦ Same, but more accurate

Related Works

� Change Impact Analysis

� What’s new:
◦ Exploring the recurring patterns of co-applied

atomic changes
◦ Static analysis on partial code

Related Works

� Automatic Program Repair (APR)
� What’s new:
◦ Showing the significant gap between APR fixes

and real fixesStatic analysis on partial code
◦ Potential ways to close the gap

Threats to Validity

� External Validity : may not generalize to
other projects

� Construct Validity : may be subject to
human bias

� Internal Validity : InterPart may miss some
dependency relations between co-applied
changes

Conclusion

� Multi-entity fixes are frequently applied by
developers

� There are three major recurring patterns
that frequently connect relevant co-changed
entities

� Although a multi-entity fix is never identical
to other fixes, the fix may apply similar or
divergent edits to the entities with similar
textual content, field usage, or method
invocations.

Discussion

� How can developers help the automated
tools to fix bugs?

� For multi-entity bug fixing, which is the
best way to fix bugs?

Thanks!

