
Automated Decomposition
of Build Targets

Authors: Mohsen Vakilian, Raluca Sauciuc, J. David Morgenthaler, Vahab Mirrokni
Presenter: Wentao Fan

Problem Statement

● Underutilized targets result in less modular code, overly large artifacts, slow
builds, and unnecessary build and test triggers.

● Manually decomposing a target is tedious and error-prone.

Solution

● Quantify the benefit of a decomposition in terms of the number of triggers
that it saves.

● Formalize the decomposition problem as a graph problem and prove that
finding the best decomposition is NP-hard.

● Present DECOMPOSER—a tool for decomposing targets.
● Present REFINER—a tool that refactors build specifications to take advantage

of a decomposition.

Build System

● A build system is responsible for transforming source code into libraries,
executable binaries, and other artifacts. The build system takes as input a set
of targets that programmers declare in build files.

● Ensure that the required dependencies of the target are built.
● Build the desired target from its sources and dependencies.
● The final artifact depends on the kind of the target.

Build System: Build Target

● Programmers have to specify four attributes in the specification of a target:
name, kind, source files, and dependencies.

Build System: Dependency Graph

● Build Graph (Target-level Dependencies)
● Cross References Graph (File-level Dependencies)

Build System: Dependency Graph

● Definition 1: The cross references between the source files of a target τ can
be represented as a graph G(τ), called the cross references graph of τ. The
vertices of G(τ) are members of S(τ) and there is an edge (f1, f2) ∈ E(G(τ)) if
and only if f1 → f2

● The graph G(l1) is a subgraph of the graph shown in Figure 2. In this example,
G(l1) consists of ten vertices corresponding to the files of l1 and the
dependency edges between these files.

Build System: Continuous Integration(CI)

● The CI system computes the set of targets that may be affected by a code
change.

● In Figure 2, if any of the source files of network change, the CI system will
invoke the build system to build the targets that transitively depend on
network and run the tests included in the test targets that transitively depend
on network.

Underutilized Targets

● If a target has some dependent targets that need only a subset of its source
files, the authors consider the target as an underutilized target.

● Underutilized targets lead to less modular software, larger binaries, slower
builds, and unnecessary builds and tests triggered by the CI system.

● Dependency Granularity: The finest levels of dependencies that existing build
systems track are target-level dependencies.

Target Decomposition

● Target decomposition: A refactoring to remove underutilized targets is to
decompose them into smaller targets. The smaller targets are called
constituent targets.

● For the example in Section “Underutilized Targets”, this refactoring would
decompose the underutilized target network into 2 constituent targets
network_a and network_b such that S(network_a) = S1, S(network_b) = S2 and
network_a depends on network_b.

● Decomposition Granularity. Finer-grained decompositions can remove a
larger number of unneeded dependencies.

● Validity. Let τ /[τ1, τ2] denote a decomposition of target τ into two
constituent targets τ1 and τ2, and makes τ depend on both τ1 and τ2. A
decomposition τ /[τ1, τ2] is valid if and only if τ2 τ1.

Target Decomposition

● Trigger Saving. The authors measure the benefit of a decomposition by the
number of binary and test triggers that it saves. Let Δ(τ /[τ1, τ2]) denote the
quantitative benefit of τ /[τ1, τ2]. Δ(τ /[τ1, τ2]) is referred as the trigger
saving of τ /[τ1, τ2].

● Definition 2: D(τ) denotes the set of binary and test targets that transitively
depend on target τ.

● Let p1 be the probability that a change affects only a file in S(τ1). Similarly, let
p2 be the probability that a change affects only a file in S(τ2). Approximate p1
by |S(τ1)|/(|S(τ1)|+ |S(τ2)|) and p2 by |S(τ2)|/(|S(τ1)|+|S(τ2)|). These formula
are approximations and not exact values.

Target Decomposition

● Definition 3: Δ(τ /[τ1, τ2]), the trigger saving of decomposition τ /[τ1, τ2], is:

Target Decomposition

● Δ(τ /[τ1, τ2]) is the expected
number of binary and test targets
that won’t be triggered after
applying the decomposition and
updating the dependents of τ. The
greater Δ(τ /[τ1, τ2]) is, the more
triggers will be saved by the
decomposition

Hardness of Decomposition

● Theorem: Given a target τ, finding the decomposition τ /[τ1, τ2] that
maximizes Δ(τ /[τ1, τ2]) is an NP-hard problem.

● Proof: The authors prove NP-hardness by showing a reduction from the
maximum clique problem in graph theory. The proof is included in an
accompanying technical report

Decomposition Algorithm

This paper proposes an efficient greedy algorithm that finds effective
decompositions in practice. The algorithm suggests a decomposition in the
following steps:

● Compute the strongly connected components (SCCs) of the cross references
graph of the given target.

● Find the binary and test targets that transitively depend on each SCC.
● Partition the SCCs of the target into two sets with a goal of maximizing the

trigger saving (Definition 3).
● Update the build specifications to apply the decomposition.

Decomposition Algorithm: SCC

● A directed graph G is strongly connected if and only if for each pair of vertices
v1, v2 ∈ V (G), v1->Gv2 and v2->Gv1. A strongly connected component of a
graph G is a maximal subgraph of G that is strongly connected.

● the authors refer to a strongly connected component as an SCC(Strongly
Connected Components).

● Condensation Graph. If each SCC of G is contracted to a single vertex, the
resulting graph is the condensation graph of G denoted as C(G). In Figure 2,
C(G(l1)) has four vertices C1, C2, C3, and C4 and 3 edges.

● The algorithm proposes a decomposition to only 2 constituent targets by
default, because finegrained decomposition has some problems(Section
“Target Decomposition”).

Decomposition Algorithm: Dependents

● A decomposition τ /[τ1, τ2] is ideal if it maximizes Δ(τ /[τ1, τ2]) (Definition
3). Δ(τ /[τ1, τ2]) depends on D(τ1) and D(τ2) (Definition 2), i.e., the set of
binary and test targets that transitively depend on τ1 and τ2, respectively.

● D(τ, C) is the set of binary and test targets that transitively depend on SCC C
of G(τ).

● This paper computes D(τ), the set of binary and test targets that transitively
depend on τ by taking the union of D(τ, C) for all SCC C of G(τ).

Decomposition Algorithm: Unifying Components

● Unification is an operation that
takes two components C1 and C2
of G(τ) and creates a new
component C such that S(τ, C) =
S(τ, C1) ∪ S(τ, C2).

● If C1 and C2 are unified to C, the
authors will have D(τ, C) = D(τ, C1)
∪ D(τ, C2).

● Figure 4 shows 2 subsequent
unifications applied on the
condensation graph of target l1 in
Figure 2.

Decomposition Algorithm: Unifying Components

● Iterative Unification: After computing the SCCs of the cross references
graph of a target, the algorithm iteratively unifies two components at each
step until only two are left.

● Let δ(τ, C1, C2) be the cost of unifying components C1 and C2 of G(τ).
Similar to Definition 3, δ(τ, C1, C2) is defined as:

Decomposition Algorithm: Unifying Components

● Avoiding Invalid Decompositions: The unification algorithm as described
above may produce invalid decompositions.

● In Figure 4, unifications can produce an invalid decomposition, because the
targets introduce a circular dependency to the build graph.

● Lemma 1: Contracting two vertices that are adjacent in a topological ordering
of a DAG results in another DAG.

● Lemma 2: Contracting two root vertices (i.e., vertices without incoming
edges) or two leave vertices (i.e., vertices without outgoing edges) of a DAG
results in another DAG.

Decomposition Algorithm: Constituent target

● Currently, rewriting the build specifications to introduce the constituent
targets is semi-automated. The iterative unification of the components of τ
terminates when only two components are left.

● Set S(τ) to ∅ and specify the constituent targets.
● Run a separate tool that removes unneeded dependencies and converts

dependencies to direct ones.

Dependency Refinement

● Dependency refinement: To unleash the full benefits of a decomposition, the
dependents of the target need to change to depend on only the needed
constituent targets.

● REFINER is developed to automate the dependency refinement.
● Given an underutilized target, REFINER automatically and safely generates a

patch.
● Figure 5 lists the pseudocode of REFINER. REFINER examines every

dependent u of the given underutilized target τ(line 1).

Dependency Refinement

● First, REFINER removes the
dependency of u on τ (line 2). If u
continues to build successfully, this
suggests that the dependency on u
was unneeded.

● Otherwise, REFINER first tries a
dependency on τ2 (line 4) and then
τ1 (line 6). If u cannot be built
successfully with a dependency on
either τ1 or τ2, it means that u
needs both τ1 and τ2.

Soundness

● Graphs(target-level and file-level dependency graphs) are sound when all the
dependencies that appear in source and build files are included in the graphs.

● Soundness of DECOMPOSER. The paper shows that if the file-level and
target-level dependency graphs are sound, the greedy decomposition
algorithm will also be sound. The decomposition τ /[τ1, τ2] does not affect
the target-level dependencies that do not involve τ, τ1, and τ2.

● Soundness of REFINER. The paper shows that REFINER is also sound if the
target-level dependencies are sound. REFINER may change only the
dependencies of each dependent u of the underutilized target τ.

Implementation

● DECOMPOSER is a Java program which gets the file-level dependencies of a
target from a service.

● The Facade design pattern is employed to provide abstractions for the
services that DECOMPOSER relies on.

● DECOMPOSER uses FlumeJava for analyzing targets in parallel.
● REFINER is a Python program that relies on the build system, the target-level

dependencies, and a headless tool for rewriting build specifications.

Evaluation

● RQ1 : What percentage of targets
can be decomposed?

● DECOMPOSER reported that 19,994
(50%) of the analyzed targets were
decomposable.

● A target is decomposable if and
only if its cross references graph
has at least two SCCs.

Evaluation

● RQ2 : How effective are the
decompositions that Decomposer
suggests?

● The authors measure the
effectiveness of a decomposition
by calculating the number (RQ2.1)
and percentage (RQ2.2) of saved
triggers and the duration (RQ2.3)
and percentage (RQ2.4) of saved
test execution time.

Evaluation

● RQ2.1 : How many triggers can Decomposer save?
● DECOMPOSER estimates that the decompositions it suggests for 26% of the

decomposable targets (5,129 of 19,994) would save at least one trigger.
Moreover, it found that on average decomposing a target saves 276 triggers
(Table I) per change to the target. Table II shows that decomposing any one
of 355 targets would save at least 900 triggers of the target.

Evaluation

● RQ2.2 : What percentage of
triggers can Decomposer save?

● The decompositions suggested by
DECOMPOSER save 11% of the
triggers on average (Table I). Table
III shows that decomposing any
one of only 31 targets would save
at least 90% of the triggers per
change to the target.

Evaluation

● RQ2.3 : How much test execution
time can Decomposer save?

● The decompositions that
DECOMPOSER suggests save 98
minutes of the test execution time
of a decomposable target on
average (Table I). Table IV
indicates that decomposing any of
1,145 targets would reduce the test
execution time per change to the
target by at least an hour.

Evaluation

● RQ2.4 : What percentage of test
execution time can Decomposer
save?

● On average, a decomposition that
DECOMPOSER proposes for a
target would save 12% of the
execution time of the tests(Table I).

● Table V indicates that the
decompositions for 1,010 targets
would save at least 50% of the test
execution time of each targets.

Evaluation

● RQ3 : How efficient is
Decomposer?

● On average, DECOMPOSER
analyzes a target in two minutes
(Table I).

● Table VI shows the average
breakdown of the execution time of
each phase of DECOMPOSER.

● Each edge of this graph indicates a
dependency of a target on another
target.

Evaluation

● RQ4 : How receptive are programmers to the changes that Decomposer and
Refiner propose?

● As a preliminary evaluation, the authors selected seven targets for
decomposition. DECOMPOSER estimated high trigger savings for these
targets and the dependents of these targets declared all their direct
dependencies.

● The authors submitted code changes based on the results of DECOMPOSER
for these seven targets. Six code changes got reviewed, four of which got
approved. Two code changes got rejected, because the reviewer expected the
target to change rarely.

Related Work

● Empirical Studies. McIntosh etc al. [24] studied the version histories of ten
projects and found that build maintenance accounts for up to 27% overhead
on source code development and 44% overhead on test development. In
another study of six open-source projects [23], McIntosh et al. found that the
size of build files and source files are highly correlated.

● Underutilized Targets. In the authors' prior work, they discussed several code
smells specific to build specification. They introduced a tool called Clipper
that takes a binary target as input and ranks the libraries by utilization rates.

Related Work

● Software Remodularization. Researchers have developed tools for
remodularizing legacy software. These tools employ clustering, search-based,
or information retrieval techniques to find a set of modules that optimizes
some metrics.

● Analyzing, Visualizing, and Refactoring Makefiles. MAKAO is a tool that
visualizes Makefiles by analyzing their dynamic build traces. SYMake is a
static analysis tool that can detect several code smells of Makefiles.

● Test Selection. It is used to select a subset of the tests to run on a future
version of the program without compromising the fault-detection capability of
the test suite.

Limitations and Future Work

● Generalizability: The evaluation results are limited to Java targets at Google.
● Soundness: Currently, the target-level dependencies miss the dependencies on

generated targets, and the file-level dependencies include only the static
dependencies.

● Objective function: DECOMPOSER uses the number of saved triggers as an objective
function to find a decomposition. The authors plan to experiment with different
objective functions in the future.

● Decomposition Algorithm: DECOMPOSER employs a greedy algorithm to suggest a
decomposition, which is fast. However, finding an approximation algorithm with a
provable guarantee of closeness to the optimal decomposition or proving the lack of
such an algorithm are open problems.

● Adoption: About a dozen programmers at Google have used DECOMPOSER currently.
The author's vision is to integrate DECOMPOSER into the programming workflow to
gain a wider adoption.

Conclusion

● This paper focuses on a specific code smell of build specifications that the
authors identified in Google’s code base, namely, underutilized build targets.

● The authors a tool for large-scale identification and decomposition of
underutilized build targets.

● The evaluation results show that the tool is both effective and efficient at
○ Estimating the benefits of decomposing build targets, and
○ Proposing decompositions of build targets.

Discussion

● Weakness on Evaluation?

● Possible improvements on Decomposer/Refiner?

● Is the complexity of the algorithm reasonable?

Thank You!!

